Effect of Bismuth Addition on Physical Properties of Sn-Zn Lead-Free Solder Alloy

  • Athil Al-EzziEmail author
  • Abbas Al-Bawee
  • Feryal Dawood
  • Abeer A. Shehab


The aim of this work is to improve the properties of eutectic Sn-9Zn solder alloy by adding different amounts of bismuth to produce alternate lead-free solder alloys for use in electronic applications. Phase identification of the various solders was performed by x-ray diffraction analysis. Scanning electron microscopy was employed for morphological characterization of the prepared solder alloys. Spreading tests were used to measure the contact angle, and the electrical resistance was measured. Differential scanning calorimetry (DSC) thermographs were obtained for the alternate lead-free alloys. The results showed that Bi addition could clearly improve the wettability and physical properties of the Sn-9Zn base alloy by decreasing the melting point.


Sn-9Zn lead-free solder melting point pasty range contact angle electrical resistivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The High Ministry of Education and Scientific Research is acknowledged for support.

Supplementary material

11664_2019_7577_MOESM1_ESM.pdf (648 kb)
Supplementary material 1 (PDF 647 kb)


  1. 1.
    Z. Xiao, S. Xue, Y. Hu, H. Ye, L. Gao, and H. Wang, J. Mater. Sci. Mater. Electron. 22, 659 (2011).CrossRefGoogle Scholar
  2. 2.
    A. Kar, M. Ghosh, A.K. Ray, and R.N. Ghosh, Mater. Sci. Eng. 459, 69 (2007).CrossRefGoogle Scholar
  3. 3.
    M. Kamal and E.S. Gouda, Cryst. Res. Technol. 41, 1210 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Cheng, C.M. Huang, and M. Pecht, Microelectron. Reliab. 75, 77 (2017).CrossRefGoogle Scholar
  5. 5.
    X. Chen, A. Hu, M. Li, and D. Mao, J. Alloys Compd. 460, 478 (2008).CrossRefGoogle Scholar
  6. 6.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, J. Electron. Mater. 31, 921 (2002).CrossRefGoogle Scholar
  7. 7.
    C.M.L. Wu, C.M.T. Law, D.Q. Yu, and L. Wang, J. Electron. Mater. 32, 63 (2003).CrossRefGoogle Scholar
  8. 8.
    Y.-S. Kim, K.-S. Kim, C.-W. Hwang, and K. Suganuma, J. Alloys Compd. 352, 237 (2003).CrossRefGoogle Scholar
  9. 9.
    W. Chen, S. Xue, H. Wang, Y. Hu, and J. Wang, J. Mater. Sci. Mater. Electron. 21, 719 (2010).CrossRefGoogle Scholar
  10. 10.
    J.-M. Song, N.-S. Liu, and K.-L. Lin, Mater. Trans. 45, 776 (2004).CrossRefGoogle Scholar
  11. 11.
    A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-Shaarawy, and A.M. Abdraboh, J. Alloys Compd. 484, 134 (2009).CrossRefGoogle Scholar
  12. 12.
    J. Zhou, Y. Sun, and F. Xue, J. Alloys Compd. 397, 260 (2005).CrossRefGoogle Scholar
  13. 13.
    T. Zhao and L. Jiang, Colloids Surf. B Biointerfaces 161, 324 (2018).CrossRefGoogle Scholar
  14. 14.
    A. Bakr El-Bediwi, A. El-Shafei, and M. Kamal, IJET-IJENS 14, 61 (2014).Google Scholar
  15. 15.
    B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, 3rd edn (Edinburgh Gate, England: Pearson Education, 2014), pp. 375–381.Google Scholar
  16. 16.
    K. Nogita, M.A.A.M. Salleh, S. Smith, Y. Wu, S.D. Mcdonald, A.G.A. Razak, S. Liu, T. Akaiwa, T. Nishimura, International Conference on Electronics Packaging (2017), pp. 1–7.Google Scholar
  17. 17.
    R. Shalaby, Int. J. Phys. Res. 3, 1 (2013).Google Scholar
  18. 18.
    H. Okamoto, M.E. Schlesinger, and E.M. Mueller, Alloy Phase Diagrams (Materials Park, OH: ASM International, 1992), pp.1–500.Google Scholar
  19. 19.
    S.W. Chen, C.H. Wang, S.K. Lin, and C.N. Chiu, Lead-Free Electronic Solders (Boston, MA: Springer, 2006), pp. 19–37.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials Engineering DepartmentUniversity of DiyalaDiyalaIraq
  2. 2.Science DepartmentUniversity of DiyalaDiyalaIraq

Personalised recommendations