Carbon Derived from Sucrose as Anode Material for Lithium-Ion Batteries

  • Rahul KumarEmail author
  • K. Anish Raj
  • Sagar Mita
  • Parag Bhargava


Carbon materials are used as anode material in lithium-ion batteries (LiBs) due to their promising cyclic performance and high protection. Carbon material was produced by sucrose at high temperature in flowing argon. Carbon material was used as anode material in LiBs and exhibited the reversible capacity of 180 mA h/g at a specific current of 135 mA/g even at 100 charge–discharge cycles. Carbon material also exhibited the discharge capacity of 118 mA h/g after the 50th cycle and indicates the ∼ 93% capacity retention of the cell after the 50th cycle.


Carbon material carbonization lithium-ion batteries cycle stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to SAIF and NCPRE IIT Bombay.


  1. 1.
    N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, and P.G. Bruce, Angew. Chem. Int. Ed. 51, 9994 (2012).CrossRefGoogle Scholar
  2. 2.
    K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Sol. State Ion. 3, 171 (1981).CrossRefGoogle Scholar
  3. 3.
    M.G.S.R. Thomas, P.G. Bruce, and J.B. Goodenough, Sol. State Ion. 17, 13 (1985).CrossRefGoogle Scholar
  4. 4.
    Y. Nishi, J. Power Sources 100, 101 (2001).CrossRefGoogle Scholar
  5. 5.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Environ. Sci. 4, 3243 (2011).Google Scholar
  6. 6.
    G. Jeong, Y.U. Kim, H. Kim, Y.J. Kim, and H.J. Sohn, Environ. Sci. 4, 1986 (2011).Google Scholar
  7. 7.
    B. Dunn, H. Kamath, and J.-M. Tarascon, Science 334, 928 (2011).CrossRefGoogle Scholar
  8. 8.
    L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Environ. Sci. 4, 2682 (2011).Google Scholar
  9. 9.
    B. Scrosati and J. Garche, J. Power Sources 195, 2419 (2010).CrossRefGoogle Scholar
  10. 10.
    F. Chang, J. Liang, Z. Tao, and J. Chen, Adv. Mater. 23, 1695 (2011).CrossRefGoogle Scholar
  11. 11.
    R.I. Eglitis and G. Borstel, Phys. Status Solidi A 202, R13 (2005).CrossRefGoogle Scholar
  12. 12.
    R.I. Eglitis, Phys. Scr. 90, 094012 (2015).CrossRefGoogle Scholar
  13. 13.
    S.J. Dillon and K. Sun, Curr. Opin. Solid State Mater. Sci. 16, 153 (2012).CrossRefGoogle Scholar
  14. 14.
    Z.S. Hong, T.B. Lan, Y.Z. Zheng, L.L. Jiang, and M.D. Wei, Funct. Mater. Lett. 4, 65 (2011).CrossRefGoogle Scholar
  15. 15.
    Y.X. Xu, Z.S. Hong, L.C.J. Yang, and M.D. Wei, Electrochim. Acta 88, 74 (2013).CrossRefGoogle Scholar
  16. 16.
    H.Q. Tang, Z.Y. Tang, C.Q. Du, F.C. Qie, and J.T. Zhu, Electrochim. Acta 120, 187 (2014).CrossRefGoogle Scholar
  17. 17.
    R.O. Loutfy and S. Katagiri, Perspectives of Fullerene Nanotechnology (Dordrecht: Springer, 2002), pp. 357–367.Google Scholar
  18. 18.
    R. Carter, L. Oakes, A.P. Cohn, J. Holzgrafe, H.F. Zarick, S. Chatterjee, R. Bardhan, and C.L. Pint, J. Phys. Chem. C 118, 20137 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Zhang, X. Zhang, X. Sun, D. Zhang, H. Lin, C. Wang, H. Wang, and Y. Ma, ChemSusChem 6, 1084 (2013).CrossRefGoogle Scholar
  20. 20.
    Y. Jiang, Z. Jiang, S. Cheng, and M. Liu, Electrochim. Acta 146, 437 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Sato, M. Noguchi, A. Demachi, N. Oki, and M. Endo, Science 264, 556 (1994).CrossRefGoogle Scholar
  22. 22.
    N.A. Kaskhedikar and J. Maier, Adv. Mater. 21, 2664 (2009).CrossRefGoogle Scholar
  23. 23.
    N. Du, X. Wu, C. Zhai, H. Zhang, and D. Yang, J. Alloys Compd. 580, 457 (2013).CrossRefGoogle Scholar
  24. 24.
    Y.S. Yun, V.D. Le, H. Kim, S.J. Chang, S.J. Baek, S. Park, B.H. Kim, Y.H. Kim, K. Kang, and H.J. Jin, J. Power Sources 262, 79 (2014).CrossRefGoogle Scholar
  25. 25.
    T.D. Dao, J.E. Hong, K.S. Ryu, and H.M. Jeong, Chem. Eng. J. 250, 257 (2014).CrossRefGoogle Scholar
  26. 26.
    V.S. Channu, R. Bobba, and R. Holze, Colloid Surf. A 436, 245 (2013).CrossRefGoogle Scholar
  27. 27.
    P.G. Bruce, B. Scrosati, and J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).CrossRefGoogle Scholar
  28. 28.
    Y.S. Hu, P. Adelhelm, B.M. Smarsly, S. Hore, M. Antonietti, and J. Maier, Adv. Funct. Mater. 17, 1873 (2007).CrossRefGoogle Scholar
  29. 29.
    R. Kumar, V. More, S. Monthy, S. Sankar, S. Mallick, and P. Bhargava, J. Colloid Interface Sci. 459, 146 (2015).CrossRefGoogle Scholar
  30. 30.
    R. Kumar, S. Sankar, S. Mallick, and P. Bhargava, Sol. Energy 144, 215 (2017).CrossRefGoogle Scholar
  31. 31.
    R. Kumar, V. Sahajwalla, and P. Bhargava, Nanoscale Adv. 1, 3192 (2019).Google Scholar
  32. 32.
    R. Kumar, S. Sankar, S. Mallick, and P. Bhargava, J. Opt. Mater. 64, 401 (2017).CrossRefGoogle Scholar
  33. 33.
    R. Kumar and P. Bhargava, J. Mater. Sci. Sem. Process. 40, 331 (2015).CrossRefGoogle Scholar
  34. 34.
    R. Kumar and P. Bhargava, J. Alloys Compd. 748, 905 (2018).CrossRefGoogle Scholar
  35. 35.
    R. Kumar and P. Bhargava, RSC Adv. 6, 8705 (2016).CrossRefGoogle Scholar
  36. 36.
    R. Kumar and P. Bhargava, Bull. Mater. Sci. 40, 1197 (2017).CrossRefGoogle Scholar
  37. 37.
    R. Kumar, B.K. Singh, A. Soam, S. Parida, and P. Bhargava, Diam. Relat. Mater. 94, 110 (2019).CrossRefGoogle Scholar
  38. 38.
    R. Kumar and P. Bhargava, J. Asian Ceram. Soc. 3, 262 (2015).CrossRefGoogle Scholar
  39. 39.
    S. Nayak, A. Soam, J. Nanda, C. Mahinder, M. Singh, D. Mohapatra, and R. Kumar, J. Mater. Sci. Mater. Electron. 29, 9361 (2018).CrossRefGoogle Scholar
  40. 40.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007).CrossRefGoogle Scholar
  41. 41.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. Nguyen, and R.S. Ruoff, Carbon 45, 1558 (2007).CrossRefGoogle Scholar
  42. 42.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).CrossRefGoogle Scholar
  43. 43.
    A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy, Nat. Chem. 2, 581 (2010).CrossRefGoogle Scholar
  44. 44.
    D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, and C.A. Ventrice, Carbon 47, 145 (2009).CrossRefGoogle Scholar
  45. 45.
    O. Akhavan, Carbon 48, 509 (2010).CrossRefGoogle Scholar
  46. 46.
    H.K. Jeong, Y.P. Lee, R.J. Lahaye, M.H. Park, K.H.I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, and Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008).CrossRefGoogle Scholar
  47. 47.
    A. Barinov, L. Gregoratti, P. Dudin, S.L. Rosa, and M. Kiskinova, Adv. Mater. 21, 1916 (2009).CrossRefGoogle Scholar
  48. 48.
    H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R. Car, D.A. Saville, and I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006).CrossRefGoogle Scholar
  49. 49.
    C. Hontoria-Lucas, A.J. Lopez-Peinado, J.D. Lopez-Gonzalez, M.L. Rojas-Cervantes, and R.M. Martin-Aranda, Carbon 33, 1585 (1995).CrossRefGoogle Scholar
  50. 50.
    S. Jin, C. Daniel, D. Mohanty, S. Nagpure, and D.L. Wood, Carbon 105, 52 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Rahul Kumar
    • 1
    • 2
    Email author
  • K. Anish Raj
    • 1
    • 3
  • Sagar Mita
    • 1
    • 3
  • Parag Bhargava
    • 1
    • 2
  1. 1.National Centre for Photovoltaic Research and Education (NCPRE)Indian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  3. 3.Department of Energy Science and EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations