Advertisement

Synthesis and Influence Factors Study of 4A Molecular Sieve via Halloysite

  • Yehan Xiong
  • Guangwen Lu
  • Yongqian WangEmail author
  • Qimeng SunEmail author
Article
  • 8 Downloads

Abstract

A 4A Zeolite molecular sieve was successfully synthesized with a facile hydrothermal method. We used Yunnan soft kaolin as raw material, purified Halloysite and synthesized a 4A Zeolite molecular sieve directly. On this basis, we studied the effect of alkali concentration, solid–liquid ratio, aging temperature and crystallization temperature on the calcium ion exchange performance of 4A Zeolites. The results showed that the calcium ion exchange rate of 4A molecular sieve could reach 326 mg CaCO3/g when it was synthesized in a condition of 2 mol/L of molecular alkali, 60°C aging temperature and 90°C crystallization temperature. The x-ray diffraction results indicated that the molecular sieve prepared under optimum conditions was of good crystallinity. The field emission scanning electron microscopy results showed that the morphologies of synthesized samples prepared under optimum conditions was a cube structure.

Keywords

4A Zeolite Halloysite hydrothermal synthesis Kaolin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    J.N. Niu, Y.H. Qiang, C.Y. Wang, X. Li, Y.H. Zhou, X.Y. Shang, and Q.C. Zhuang, Acta Mineral. Sin. 34, 13 (2014).Google Scholar
  2. 2.
    X.F. Li, J.F. Guan, F.F. Chen, F. Zhang, and K. Yin, Acta Mineral. Sin. 36, 138 (2016).Google Scholar
  3. 3.
    D. Novembre, B.D. Sabatino, and D. Gimeno, Clays Clay Miner. 53, 28 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Zsirka, E. Horvath, P. Szabo, T. Juzsakova, R.K. Szilagyi, D. Fertig, E. Mako, T. Varga, Z. Konya, and A. Kukovecz, J. Kristof. Appl. Surf. Sci. 399, 245 (2017).CrossRefGoogle Scholar
  5. 5.
    H. Yan, P. Zhang, J. Li, X.L. Zhao, K. Zhang, and B. Zhang, Sci. Rep. 5, 18641 (2015).CrossRefGoogle Scholar
  6. 6.
    Y. Lvov, W.C. Wang, L.Q. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016).CrossRefGoogle Scholar
  7. 7.
    T. Tsoufis, F. Katsaros, B.J. Kooi, E. Bletsa, S. Papageorgiou, Y. Deligiannakis, and I. Panagiotopoulos, Chem. Eng. J. 313, 466 (2017).CrossRefGoogle Scholar
  8. 8.
    F. Ferrante, N. Armata, G. Cavallaro, and G. Lazzara, J. Phys. Chem. C. 121, 2951 (2017).CrossRefGoogle Scholar
  9. 9.
    T.S. Gaaz, A.B. Sulong, M.N. Akhtar, A.A. Kadhum, A.B. Mohamad, and A.A. Al-Amiery, Molecules 20, 22833 (2015).CrossRefGoogle Scholar
  10. 10.
    Y.B. Fu and L.D. Zhang, J. Solid State Chem. 178, 3595 (2005).CrossRefGoogle Scholar
  11. 11.
    J.A. Weisman, U. Jammalamadaka, K. Tappa, and D.K. Mills, Bioengineering 4, 1 (2017).CrossRefGoogle Scholar
  12. 12.
    F. Xia, Y. Cheng, J. Dai, C.L. Sun, R. Liu, and X.D. Lou, Angew Chem. Int. Ed. 57, 3123 (2018).CrossRefGoogle Scholar
  13. 13.
    S.K. Konnova, Y.M. Lvov, and R.F. Fakhrullin, Clay Miner. 51, 429 (2016).CrossRefGoogle Scholar
  14. 14.
    D.H. Zhang, W.J. Huo, J. Wang, T.C. Li, X.J. Cheng, J.L. Li, and A.Q. Zhang, J. Appl. Poym. Sci. 126, 1580 (2012).CrossRefGoogle Scholar
  15. 15.
    D.C. Hu, B.C. Zhong, Z.X. Jia, J. Lin, M.L. Liu, Y.F. Luo, and D.M. Jia, Mater. Lett. 188, 327 (2017).CrossRefGoogle Scholar
  16. 16.
    X.C. Li, T.Y. Zhai, P.C. Gao, H.L. Cheng, R.Z. Hou, X.D. Lou, and F. Xia, Nat. Commun. 9, 40 (2018).CrossRefGoogle Scholar
  17. 17.
    S. Sadjadi and M. Atai, t. Appl. Clay Sci. 153, 78 (2017).CrossRefGoogle Scholar
  18. 18.
    Y. Li, J.J. Huang, and Z.C. Liang, Bull. Chin. Ceram. Soc. 35, 3426 (2016).Google Scholar
  19. 19.
    X.D. Lou, Y. Zhuang, X.L. Zuo, Y.M. Jia, Y.N. Hong, X.H. Min, Z.Y. Zhang, X.M. Xu, and F. Xia, Real time C 87, 6822 (2015).Google Scholar
  20. 20.
    Z.H. Zhou, G. Jin, H. Liu, J.X. Wu, and J.F. Mei, Appl. Clay Sci. 97, 110 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Rai and A. Sharma, Indian J. Chem. Sect. B Org. Chem. Incl. Med. Chem. 57, 340 (2018).Google Scholar
  22. 22.
    Z. Tauanov, D. Shah, V. Inglezakis, and P.K. Jamwal, J. Clean. Prod. 182, 616 (2018).CrossRefGoogle Scholar
  23. 23.
    J.L. Chen and X.W. Lu, J. Water Reuse Desalin. 8, 94 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
  2. 2.School of Environmental StudiesChina University of GeosciencesWuhanChina

Personalised recommendations