Journal of Electronic Materials

, Volume 48, Issue 10, pp 6169–6175 | Cite as

On the Choice of Metallic Contacts with Polycrystalline PbSe Films and Its Effect on Carrier Sweepout and Performance in Mid-wave Infrared (MWIR) Photodetectors

  • Samiran GangulyEmail author
  • Sung-Shik Yoo
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018


Carrier sweepout is one of the many phenomena that limit critical performance metrics of mid-wave infrared (MWIR) photodetectors, such as the photoconductive gain (γ), photoresponsivity (η), specific detectivity (D*), and hence the overall performance of cameras built using these detectors. Preventing carrier sweepout in photoconductors at high applied bias and modulation frequencies can increase the electrical operating bias range and consequently expand the possible read-out integrated circuit design space and capabilities. Polycrystalline PbSe-based MWIR photodetectors have shown great potential for building integrated high-performance devices. We discuss herein the choice of metallic contacts for such detectors built by Northrop Grumman Systems Corp. under this program using the complex physics of carrier trapping and the interface of the contact metal with the photosensitive PbSe film that allows these detectors to be essentially free of carrier sweepout even at high applied electric fields.


Mid-wave infrared detectors PbSe photoresponsivity carrier sweepout band theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).CrossRefGoogle Scholar
  2. 2.
    B. Weng, J. Qiu, L. Zhaoa, Z. Yuana, C. Changa, and Z. Shi, Proc. SPIE 8993, 899311–1 (2014).Google Scholar
  3. 3.
    G. Roelkens, U. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J.V. Campenhout, L. Cerutti, J.-B. Rodriguez, E. Tourni, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A.C. Peacock, X. Liu, R. Osgood, and W. Green, Opt. Mater. Express 3, 1523 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Konczakowska and B.M. Wilamowski, Fundamentals of Industrial Electronics, ed. B.M. Wilamowski and J.D. Irwin (Taylor & Francis, 2011), p. 11–1.Google Scholar
  5. 5.
    A. Rogalski, Infrared Detectors (Boca Raton: CRC Press, 2010).CrossRefGoogle Scholar
  6. 6.
    S. Ganguly, M. Jang, Y. Tan, S.-S. Yoo, M.C. Gupta, and A.W. Ghosh, A Multiscale Materials-to-Systems Modeling of Polycrystalline Pb-Salt Photodetectors. arXiv:1806.02933 [cond-mat], June 2018. arXiv: 1806.02933.
  7. 7.
    L. Zhao, J. Qiu, B. Weng, C. Chang, Z. Yuan, and Z. Shi, J. Appl. Phys. 115, 084502 (2014).CrossRefGoogle Scholar
  8. 8.
    J.N. Humphrey and R.L. Petritz, Phys. Rev. 105, 1736 (1957).CrossRefGoogle Scholar
  9. 9.
    B. Gaury and P.M. Haney, Phys. Rev. Appl. 8, 054026 (2017).CrossRefGoogle Scholar
  10. 10.
    R.L. Petritz, Phys. Rev. 104, 1508 (1956).CrossRefGoogle Scholar
  11. 11.
    P.C. Datskos and N.V. Lavrik, Expanding the Vision of Sensor Materials, ed. National Research Council (Washington, DC: National Academy Press, 2011).Google Scholar
  12. 12.
    D.L. Smith, J. Appl. Phys. 56, 1663 (1984).CrossRefGoogle Scholar
  13. 13.
    V.L. Rideout, Solid State Electron. 18, 541 (1975).CrossRefGoogle Scholar
  14. 14.
    D.K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Hoboken: Wiley, 2006).Google Scholar
  15. 15.
    D.P. Kennedy and P.C. Murley, IBM J. Res. Dev. 12, 242 (1968).CrossRefGoogle Scholar
  16. 16.
    T. Valet and A. Fert, Phys. Rev. B 48, 7099 (1993).CrossRefGoogle Scholar
  17. 17.
    A. Goetzberger, J. Knobloch, and B. Vosch, The physics of solar cells, in Crystalline Silicon Solar Cells (Wiley, 2014), p. 67.Google Scholar
  18. 18.
    S.-S. Yoo, J. Lee, C. Kauffman, T.K. Steinbach, P. Martin, J. Tucek, and S. An, High-operating temperature MWIR photodetector development using polycrystalline PbSe technology, The US Workshop on the Physics & Chemistry of IIVI Materials (Chicago, IL, 2017).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Charles L. Brown Department of Electrical and Computer EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Northrop Grumman Systems CorporationRolling MeadowsUSA

Personalised recommendations