Exploring the Electronic Properties of Ribonucleic Acids Integrated Within a Schottky-Like Junction

  • Sara Talebi
  • Souhad Daraghma
  • S. Ramesh T. Subramaniam
  • Subha Bhassu
  • Vengadesh PeriasamyEmail author


Deoxyribonucleic acid (DNA), being the main biomolecule of life, has been studied extensively in terms of its electronic properties, charge transport mechanisms and potential use in nano-electronic devices. The ability of DNA to self-replicate, self-assemble and mediate charge transfer has made it an interesting molecule to multidisciplinary researchers. However, not much attention has been given to ribonucleic acid (RNA), which is an equally important biomolecule that shares some common features with DNA. Elucidation of RNA’s electronic behavior could provide more information regarding its electronic properties, potentially offering a new biomolecule for application in bioelectronics. In this work, RNA samples integrated within two metal electrodes were subjected to positive and negative bias potentials and their resulting current profiles were investigated. Interestingly, current rectification similar to electric field-induced semi-conductive behavior of conventional Schottky junctions was observed for all RNA samples tested, indicating highly characteristic RNA-specific Schottky profiles. A non-linear profile was observed from the current–voltage (IV) characteristics of gold (Au)-RNA-Au structures showing resemblance to metal-DNA structures investigated previously. Various solid-state parameters such as turn-on voltage, shunt resistance, series resistance and ideality factor were also calculated to further understand the biomaterial’s solid-state behavior. These results successfully demonstrated the exciting observation of the semi-conductive-like behavior of RNA which could be utilized as a tool in molecular electronics.


DNA electronics RNA electronics Schottky diode molecular electronics solid-state parameters biosensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge financial support from FRGS (FP038-2017A) and PPP (PG183-2016A) grants.


  1. 1.
    C.W. Lee, O.Y. Kim, and J.Y. Lee, J. Ind. Eng. Chem. 20, 1198 (2014).CrossRefGoogle Scholar
  2. 2.
    D.D. Eley and D.I. Spivey, Trans. Faraday Soc. 58, 411 (1961).CrossRefGoogle Scholar
  3. 3.
    A. Aviram and M.A. Rathner, Chem. Phys. Lett. 29, 277 (1974).CrossRefGoogle Scholar
  4. 4.
    R.K. Gupta and V. Saraf, Curr. Appl. Phys. 9, 149 (2009).CrossRefGoogle Scholar
  5. 5.
    M. Taniguchi and T. Kawai, Physica E 33, 1 (2006).CrossRefGoogle Scholar
  6. 6.
    T.H. LaBean and H. Li, Nano Today 2, 26 (2007).CrossRefGoogle Scholar
  7. 7.
    N. Seeman, Mater. Today 6, 24 (2003).CrossRefGoogle Scholar
  8. 8.
    I. Kratochvilova, K. Kral, M. Buncek, A. Viskova, S. Nespurek, A. Kochalska, T. Todorciuc, M. Weiter, and B. Schneider, Biophys. Chem. 138, 3 (2008).CrossRefGoogle Scholar
  9. 9.
    I. Kartochvilova, T. Todorciuc, K. Kral, H. Nemec, M. Buncek, J. Sebera, S. Zalis, Z. Vokacova, V. Sychrovsky, L. Bendarova, P. Mojzes, and B. Schneider, J. Phys. Chem. B 114, 5196 (2010).CrossRefGoogle Scholar
  10. 10.
    A.R. Arnold, M.A. Grodick, and J.K. Barton, Cell Chem. Biol. 23, 183 (2016).CrossRefGoogle Scholar
  11. 11.
    J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, and S. Manalis, PNAS 99, 14142 (2002).CrossRefGoogle Scholar
  12. 12.
    C.Y. Tsai, T.L. Chang, LSh Kuo, and P.H. Chen, Appl. Phys. Lett. 89, 203902 (2006).CrossRefGoogle Scholar
  13. 13.
    S. Kilina, S. Tretiak, D.A. Yarotski, J.X. Zhu, N. Modine, A. Taylor, and A.V. Balatsky, J. Phys. Chem. C 111, 14541 (2007).CrossRefGoogle Scholar
  14. 14.
    D. Dragoman and M. Dragoman, Phys. Rev. E 80, 1 (2009).Google Scholar
  15. 15.
    B. Rafique, M. Iqbal, T. Mehmood, and M.A. Shaheen, Sens. Rev. 39, 34 (2018).CrossRefGoogle Scholar
  16. 16.
    M. Jang and J. Lee, ETRI J. 24, 455 (2002).CrossRefGoogle Scholar
  17. 17.
    O. Gulu and A. Turut, Mater. Sci.-Pol. 33, 593 (2015).CrossRefGoogle Scholar
  18. 18.
    V. Periasamy, N. Rizan, H.M.J. Al-Ta’ii, YSh Tan, H.A. Tajuddin, and M. Iwamoto, Sci. Rep. 6, 29879 (2016).CrossRefGoogle Scholar
  19. 19.
    N. Rizan, Y.Y. Chan, M.R. Niknam, J. Krishnasamy, S. Bhassu, G.Z. Hong, S. Devadas, M.S.M. Din, M.H. Tajjudin, R.Y. Othman, S.M. Phang, M. Iwamoto, and V. Periasamy, Sci. Rep. 8, 896 (2018).CrossRefGoogle Scholar
  20. 20.
    S.Z. Azmi, V. Vello, N. Rizan, J. Krishnasamy, S. Talebi, P. Gunaselvam, S.N.M. Iqbal, Y.Y. Chan, S.M. Phang, M. Iwamoto, and V. Periasamy, Appl. Phys. A 124, 559 (2018).CrossRefGoogle Scholar
  21. 21.
    D. Y. Zang and J. G. Grote, in OPMD IX conference proceedings, vol 6470, p. 64700A-1 (2007).Google Scholar
  22. 22.
    H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, J. Appl. Phys. 118, 114502 (2015).CrossRefGoogle Scholar
  23. 23.
    H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, Sens. Actuators, B 232, 195 (2016).CrossRefGoogle Scholar
  24. 24.
    H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, Sci. Rep. 6, 25519 (2016).CrossRefGoogle Scholar
  25. 25.
    H.M.J. Al-Ta’ii, V. Periasamy, and Y.M. Amin, PLoS ONE 11, e0145423 (2016).CrossRefGoogle Scholar
  26. 26.
    S. Clancy, Nat. Educ. 1, 102 (2008).Google Scholar
  27. 27.
    T.A. Cooper, L. Wan, and G. Dreyfuss, Cell 136, 777 (2009).CrossRefGoogle Scholar
  28. 28.
    O.S. Hajjawi, Cancer Cell Int. 15, 22 (2015).CrossRefGoogle Scholar
  29. 29.
    M. Huarte, Nat. Med. 21, 1253 (2015).CrossRefGoogle Scholar
  30. 30.
    P. Mu, S. Deng, and X. Fan, J. Clin. Cell Immunol. 6, 315 (2015).Google Scholar
  31. 31.
    K.Y. Hsiao, Y.C. Lin, S.K. Gubta, N. Chang, L. Yen, H.S. Sun, and S.J. Tsai, Cancer Res. 77, 2339 (2017).CrossRefGoogle Scholar
  32. 32.
    L.P. Ranum and J.W. Day, Trends Genet. 20, 506 (2004).CrossRefGoogle Scholar
  33. 33.
    L.S. Waters and G. Storz, Cell 136, 615 (2009).CrossRefGoogle Scholar
  34. 34.
    P. Poltronieri, B. Sun, and M. Mallardo, Curr. Genomics 16, 327 (2015).CrossRefGoogle Scholar
  35. 35.
    W.W. Grabow and L. Jaeger, Am. Chem. Soc. 47, 1871 (2014).Google Scholar
  36. 36.
    D. Bartel, Cell 116, 281 (2004).CrossRefGoogle Scholar
  37. 37.
    F. Scholz, Electroanalytical Methods: Guide to Experiments and Applications (Berlin: Springer, 2010), p. 11.CrossRefGoogle Scholar
  38. 38.
    E.H. Rhoderick and R.H. Williams, Metal-Semiconductor Contacts (Oxford: Clarendon, 1988).Google Scholar
  39. 39.
    S.M. Sze, Physics of Semiconductor Devices (New York: Wiley, 1981).Google Scholar
  40. 40.
    S.K. Cheung and N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986).CrossRefGoogle Scholar
  41. 41.
    D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Nature 403, 635 (2000).CrossRefGoogle Scholar
  42. 42.
    H.J. Leck, Theory of Semiconductor Devices (New York: Pergamon Press, 1976).Google Scholar
  43. 43.
    T. Kiuru, K. Dahlberg, J. Mallat, A. V. Raisanen, and T. Narhi, in IEEE conference proceedings (2011).Google Scholar
  44. 44.
    A. Rockett, The Materials Science of Semiconductors (New York: Springer, 2007).Google Scholar
  45. 45.
    R.F. Schmitsdorf, T.U. Kampen, and W.J. Monch, J. Vac. Sci. Technol., B 15, 1221 (1997).CrossRefGoogle Scholar
  46. 46.
    W. Monch, J. Vac. Sci. Technol., B 17, 1867 (1999).CrossRefGoogle Scholar
  47. 47.
    R.T. Tung, Phys. Rev. B. 45, 13509 (1992).CrossRefGoogle Scholar
  48. 48.
    G.M. Vanalme, L. Goubert, R.L. van Meirhaeghe, F. Cardon, and V.P. Daele, Semicond. Sci. Technol. 14, 871 (1999).CrossRefGoogle Scholar
  49. 49.
    A.P. Godse and U.A. Bakshi, Electronic Devices and Circuits I (Pune: Technical Publications, 2008).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sara Talebi
    • 1
    • 2
    • 3
  • Souhad Daraghma
    • 1
  • S. Ramesh T. Subramaniam
    • 2
  • Subha Bhassu
    • 3
    • 4
  • Vengadesh Periasamy
    • 1
    Email author
  1. 1.Low Dimensional Materials Research Centre (LDMRC), Department of Physics, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  2. 2.Centre for Ionics University of Malaya, Department of Physics, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  3. 3.Institute of Biological Sciences, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia
  4. 4.Centre for Research in Biotechnology for Agriculture (CEBAR)University of MalayaKuala LumpurMalaysia

Personalised recommendations