Advertisement

Thermoelectric Properties of In2O3(ZnO)k (k = 3, 4, 5, 7) Superlattice Ceramics

  • Shuhui Li
  • Ying Zhou
  • Lijun Cui
  • Zhenhua GeEmail author
  • Jing FengEmail author
Article

Abstract

In2O3(ZnO)k superlattice ceramics are promising oxide thermoelectric materials, as superlattice interfaces are effective in scattering phonons and filtering low-energy electrons to decrease thermal conductivity and improve the figure of merit (ZT) value. In this work, homologous compounds were prepared by solid-state reaction method using ZnO and In2O3 as raw materials. Phase purity and crystal structure were characterized by x-ray diffraction, revealing that In2O3(ZnO)k crystallizes in an R3 m space group for odd k values and P63/mmc for even k values. The study of thermoelectric (TE) properties showed that as k increased, the thickness of InO(ZnO) 3 + also increased, while the electrical conductivity, thermal conductivity, Seebeck coefficient, power factor and ZT value were all decreased. In2O3(ZnO)3 samples obtained a maximum power factor of 651 μW m−1 K−2 at 973 K, and also achieved a maximum ZT value of 0.24 at 973 K.

Keywords

In2O3(ZnO)k ceramic thermoelectric properties natural superlattice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51501086) and Yunnan Provincial Applied Basic Research Projects (Grant No. 2017FA023).

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. Shuhui Li and Ying Zhou contributed equally to this work.

References

  1. 1.
    C. Forman, I.K. Muritala, R. Pardemann, and B. Meyer, Renew. Sust. Energ. Rev. 57, 1568 (2016).CrossRefGoogle Scholar
  2. 2.
    J. He and T.M. Tritt, Science 357, eaak9997 (2017).CrossRefGoogle Scholar
  3. 3.
    T.M. Tritt and M.A. Subramanian, MRS Bull. 31, 188 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Shakouri, Ann. Rev. Mater. Res. 41, 399 (2011).CrossRefGoogle Scholar
  5. 5.
    A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  6. 6.
    A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard and J. R. Heath, Nature 168 (2011)Google Scholar
  7. 7.
    G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).CrossRefGoogle Scholar
  8. 8.
    L.D. Zhao, G.J. Tan, S.Q. Hao, J.Q. He, Y.L. Pei, H. Chi, H. Wang, S.K. Gong, H.B. Xu, V.P. Dravid, C. Uher, G.J. Snyder, C. Wolverton, and M.G. Kanatzidis, Science 351, 141 (2016).CrossRefGoogle Scholar
  9. 9.
    C.G. Fu, T.J. Zhu, Y.T. Liu, H.H. Xie, and X.B. Zhao, Energy Environ. Sci. 8, 216 (2015).CrossRefGoogle Scholar
  10. 10.
    C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, and T.J. Zhu, Nat. Commun. 6, 8144 (2015).CrossRefGoogle Scholar
  11. 11.
    E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).CrossRefGoogle Scholar
  12. 12.
    K. Koumoto, Y.F. Wang, R.Z. Zhang, A. Kosuga, and R. Funahashi, Annu. Rev. Mater. Res. 40, 363 (2010).CrossRefGoogle Scholar
  13. 13.
    K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003).CrossRefGoogle Scholar
  14. 14.
    J.L.F. Da Silva, Y. Yan, and S.H. Wei, Phys. Rev. Lett. 100, 255501 (2008).CrossRefGoogle Scholar
  15. 15.
    A. Walsh, J.L.F. Da Silva, Y. Yan, M.M. Al-Jassim, and S.H. Wei, Phys. Rev. B 79, 073105 (2009).CrossRefGoogle Scholar
  16. 16.
    Y.F. Yan, J.L.F. Da Silva, S.H. Wei, and M. Al-Jassim, Appl. Phys. Lett. 90, 261904 (2007).CrossRefGoogle Scholar
  17. 17.
    H.W. Peng, J.H. Song, E.M. Hopper, Q.M. Zhu, T.O. Mason, and A.J. Freeman, Chem. Mater. 24, 106 (2011).CrossRefGoogle Scholar
  18. 18.
    C.A. Hoel, T.O. Mason, J.F. Gaillard, and K.R. Poeppelmeier, Chem. Mater. 22, 3569 (2010).CrossRefGoogle Scholar
  19. 19.
    K. Park, W. S. Seo, K.U. Jang and K. Y. Ko, International Conference on Thermoelectrics 106 (2005)Google Scholar
  20. 20.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  21. 21.
    P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng. R-Rep. 67, 19 (2010).CrossRefGoogle Scholar
  22. 22.
    Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, Appl. Phys. Lett. 91, 192105 (2007).CrossRefGoogle Scholar
  23. 23.
    S.Y. Ren and J.D. Dow, Phys. Rev. B 25, 3750 (1982).CrossRefGoogle Scholar
  24. 24.
    G. Chen, Phys. Rev. B 57, 14958 (1998).CrossRefGoogle Scholar
  25. 25.
    H. Ohta, W.S. Seo, and K. Koumoto, J. Am. Ceram. Soc. 79, 2193 (1996).CrossRefGoogle Scholar
  26. 26.
    H. Hiramatsu, H. Ohta, W.S. Seo, and K.J. Koumoto, J. Jpn. Soc. Powder Powder Metall. 44, 44 (1997).CrossRefGoogle Scholar
  27. 27.
    M. Kazeoka, H. Hiramatsu, W.S. Seo, and K. Koumoto, J. Mater. Res. 13, 523 (1998).CrossRefGoogle Scholar
  28. 28.
    M. Košir, M. Čeh, C.W. Ow-Yang, E. Guilmeau, and S. Bernik, J. Am. Ceram. Soc. 100, 3712 (2017).CrossRefGoogle Scholar
  29. 29.
    P.J. Cannard and R.J.D. Tilley, J. Solid State Chem. 73, 418 (1988).CrossRefGoogle Scholar
  30. 30.
    N. Kimizuka, M. Isobe, and M. Nakamura, J. Solid State Chem. 116, 170 (1995).CrossRefGoogle Scholar
  31. 31.
    W. Pitschke and K. Koumoto, Powder Diffr. 14, 213 (1999).CrossRefGoogle Scholar
  32. 32.
    A. Kadhim, A. Hmood, and H.A. Hassan, Mater. Sci. Semicond. Process. 26, 379 (2014).CrossRefGoogle Scholar
  33. 33.
    A. Kadhim, A. Hmood, and H.A. Hassan, Mater. Sci. Semicond. Process. 15, 549 (2012).CrossRefGoogle Scholar
  34. 34.
    T.S. West, W.W. Wendlandt and H.G. Hecht, Wiley, 408 (1967)Google Scholar
  35. 35.
    Y. Orikasa, N. Hayashi, and S. Muranaka, J. Appl. Phys. 103, 2229 (2008).CrossRefGoogle Scholar
  36. 36.
    E. Guilmeau, D. Berardan, C. Simon, A. Maignan, B. Raveau, D.O. Ovono, and F. Delorme, J. Appl. Phys. 106, 053715 (2009).CrossRefGoogle Scholar
  37. 37.
    M. Amani, I.M. Tougas, O.J. Gregory, and G.C. Fralick, J. Electron. Mater. 42, 114 (2013).CrossRefGoogle Scholar
  38. 38.
    S. Bernik, M. Košir, and E. Guilmeau, Zaštita. Materijala 57, 318 (2016).CrossRefGoogle Scholar
  39. 39.
    C. Dreßler, R. Löhnert, J. Gonzalez-Julian, O. Guillon, J. Töpfer, and S. Teichert, J. Electron. Mater. 45, 1459 (2016).CrossRefGoogle Scholar
  40. 40.
    T. Endo, J. Fukushima, Y. Hayashi, and H. Takizawa, Mater. Sci. Forum 761, 27 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations