Journal of Electronic Materials

, Volume 48, Issue 10, pp 6815–6822 | Cite as

AgNi Alloy As a Suitable Barrier Layer Material for NbFeSb-Based Half-Heusler Thermoelectric Modules

  • Jiaxu Zhu
  • Fusheng LiuEmail author
  • Bo Gong
  • Xiao Wang
  • Weiqin Ao
  • Chaohua Zhang
  • Yu Li
  • Lipeng Hu
  • Heping Xie
  • Kunming GuEmail author
  • Junqin Li


As a type of moderate- and high-temperature thermoelectric materials, half-Heusler thermoelectric materials have a unique advantage in terms of their power factors and mechanical properties, and the figure of merit (ZT) of FeNb0.88Hf0.12Sb reaches 1.0 at 600°C. In this paper, after taking into account factors such as electrical conductivity, thermal conductivity, melting point, and metal activity, silver (Ag) was selected as the barrier layer material. The barrier layer and thermoelectric materials were welded together by atomic diffusion using spark plasma sintering. There was no obvious elemental diffusion on the connection surface after sintering, indicating that Ag did not impact the performance of FeNb0.88Hf0.12Sb. However, many cracks appeared on the joint surface during the aging process. In further experiments, we added a small amount of nickel (Ni) into the Ag to achieve a close connection between the barrier layer and FeNb0.88Hf0.12Sb. Moreover, we analyzed the interface of the intermetallic compounds after aging for 192 h, which showed that Ni3Nb and Ni6Nb7 compounds formed at the interface. The contact resistance was tested by a scanning probe method, and the resistivity of the barrier layer was determined to be 0.4 μΩ cm2, which is far less than that of other barrier layers. Moreover, the connection strength was greater than 40 MPa. When Ag0.9Ni0.1 was used as the barrier layer to compose the half-Heusler thermoelectric module, the thermoelectric conversion efficiency reached 7.33%, and there was no significant decrease in efficiency during the cyclic test.


Thermoelectric module half-Heusler contact resistance intermetallic compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51701126 and 51571144) and the Shenzhen Science and Technology Research Grant (No. JCYJ20150827155136104).


  1. 1.
    L. Hu, H. Wu, T. Zhu, C. Fu, J. He, P. Ying, and X. Zhao, Adv. Energy Mater. 1500411, 5 (2015).Google Scholar
  2. 2.
    Q. Jin, S. Jiang, Y. Zhao, D. Wang, J.H. Qiu, D.M. Tang, J. Tan, D.M. Sun, P.X. Hou, X.Q. Chen, K. Tai, N. Gao, C. Liu, H.M. Cheng, and X. Jiang, Nat. Mater. 62, 18 (2019).Google Scholar
  3. 3.
    L. Zhao, Y. He, H. Zhang, L. Yi, and J. Wu, J. Alloys Compd. 659, 768 (2018).Google Scholar
  4. 4.
    K. Hatsuda, H. Mine, T. Nakamura, J. Li, R. Wu, S. Katsumoto, and J. Haruyama, Sci. Adv., eaau6915, 4 (2018)Google Scholar
  5. 5.
    J. Cao, J.D. Querales-Flores, A.R. Murphy, S. Fahy, and I. Savic, Phys. Rev. B 205202, 98 (2018).Google Scholar
  6. 6.
    Z. Chen, Y. Tang, D. Li, J. Liu, L. Shen, W. Liu, L. Sun, and S. Deng, J. Alloys Compd. 282, 774 (2019).Google Scholar
  7. 7.
    S. Wongprakarn, S. Pinitsoontorn, S-a Tanusilp, and K. Kurosaki, Mater. Sci. Semicond. Process. 239, 88 (2018).Google Scholar
  8. 8.
    R. Murugasami, P. Vivekanandhan, S. Kumaran, R.S. Kumar, and T.J. Tharakan, J. Alloys Compd. 752, 773 (2019).Google Scholar
  9. 9.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 105, 7 (2008).Google Scholar
  10. 10.
    R.A. Downie, D.A. MacLaren, and J.W.G. Bos, J. Mater. Chem. A 6107, 2 (2014).Google Scholar
  11. 11.
    L.L. Wang, L. Miao, Z.Y. Wang, W. Wei, R. Xiong, H.J. Liu, J. Shi, and X.F. Tang, J. Appl. Phys. 013709, 105 (2009).CrossRefGoogle Scholar
  12. 12.
    G.Q. Ding, G.Y. Gao, and K.L. Yao, J. Phys. D Appl. Phys. 385305, 47 (2014).Google Scholar
  13. 13.
    X.Y. Huang, Z. Xu, and L.D. Chen, J. Inorg. Mater. 25, 19 (2004).Google Scholar
  14. 14.
    W.J. Xie, A. Weidenkaff, X.F. Tang, Q.J. Zhang, J. Poon, and T.M. Tritt, Nanomater 379, 2 (2012).Google Scholar
  15. 15.
    S. Chen and Z.F. Ren, Mater. Today 387, 16 (2013).Google Scholar
  16. 16.
    G.J. Snyder and T.S. Ursell, Phys. Rev. Lett. 148301, 91 (2003).Google Scholar
  17. 17.
    C.G. Fu, S.Q. Bai, Y.T. Liu, Y.S. Tang, L.D. Chen, X.B. Zhao, and T.J. Zhu, Nat. Commun. 8144, 6 (2015).Google Scholar
  18. 18.
    L.H. Huang, Q.Y. Zhang, B. Yuan, X. Lai, X. Yan, and Z.F. Ren, Mater. Res. Bull. 107, 76 (2016).Google Scholar
  19. 19.
    Q.H. Zhang, X.Y. Huang, S.Q. Bai, X. Shi, C. Uher, and L.D. Chen, Adv. Eng. Mater. 194, 18 (2016).Google Scholar
  20. 20.
    J. Shen, Z. Wang, J. Chu, S. Bai, X. Zhao, L. Chen, and T. Zhu, ACS Appl. Mater. Interfaces 14182, 11 (2019).Google Scholar
  21. 21.
    C.-C. Yu, H.-J. Wu, M.T. Agne, I.T. Witting, P.-Y. Deng, G.J. Snyder, and J.P. Chu, APL Mater. 013001, 7 (2019).Google Scholar
  22. 22.
    K. Bartholome, B. Balke, D. Zuckermann, M. Kohne, M. Muller, K. Tarantik, and J. Konig, J. Electron. Mater. 1775, 43 (2014).Google Scholar
  23. 23.
    T.J. Zhu, C.G. Fu, H.H. Xie, Y.T. Liu, and X.B. Zhao, Adv. Energy Mater. 1500588, 5 (2015).Google Scholar
  24. 24.
    H.J. Pang, C.G. Fu, H. Yu, L.C. Chen, T.J. Zhu, and X.J. Chen, J. Appl. Phys. 235106, 123 (2018).Google Scholar
  25. 25.
    P.H. Ngan, N.V. Nong, L.T. Hung, B. Balke, L. Han, E.M.J. Hedegaard, S. Linderoth, and N. Pryds, J. Electron. Mater. 594, 45 (2016).Google Scholar
  26. 26.
    E. Rausch, B. Balke, S. Ouardi, and C. Felser, Phys. Chem. Chem. Phys. 25258, 16 (2014).Google Scholar
  27. 27.
    G. R-Joshi, X. Yan, H.Z. Wang, W.S. Liu, G. Chen, and Z.F. Ren, Adv. Energy Mater. 643, 1 (2011).Google Scholar
  28. 28.
    G. Joshi and B. Poudel, J. Electron. Mater. 6047, 45 (2016).Google Scholar
  29. 29.
    X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 556, 11 (2011).Google Scholar
  30. 30.
    N. Kempf and Y. Zhang, Energy Convers. Manag. 224, 121 (2016).Google Scholar
  31. 31.
    S.J. Poon, D. Wu, S. Zhu, W.J. Xie, T.M. Tritt, P. Thomas, and R. Venkatasubramanian, J. Mater. Res. 2795, 26 (2011).Google Scholar
  32. 32.
    C. Fu, Y. Liu, X. Zhao, and T. Zhu, Adv. Electron. Mater. 1600394, 2 (2016).Google Scholar
  33. 33.
    J. Yu, C. Fu, Y. Liu, K. Xia, U. Aydemir, T.C. Chasapis, G.J. Snyder, X. Zhao, and T. Zhu, Adv. Energy Mater. 1701313, 8 (2018).Google Scholar
  34. 34.
    J. Shen, C. Fu, Y. Liu, X. Zhao, and T. Zhu, Energy Storage Mater. 69, 10 (2018).Google Scholar
  35. 35.
    W. Liu, H. Wang, L. Wang, X. Wang, G. Joshi, G. Chen, and Z. Ren, J. Mater. Chem. A 13093, 1 (2013).Google Scholar
  36. 36.
    D. Zhao, H. Geng, and X. Teng, J. Alloys Compd. 198, 517 (2012).Google Scholar
  37. 37.
    Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren, Appl. Phys. Lett. 101910, 92 (2008).Google Scholar
  38. 38.
    K.T. Wojciechowski, R. Zybala, and R. Mania, Microelectron. Reliab. 1198, 51 (2011).Google Scholar
  39. 39.
    Z. Wen, Y. Zhao, H. Hou, N. Wang, L. Fu, and P. Han, Trans. Nonferrous Met. Soc. China 1500, 24 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Institute of Deep Underground Sciences and Green EnergyShenzhen UniversityShenzhenPeople’s Republic of China

Personalised recommendations