Mechanochemical Synthesis of (Co,Cu,Mg,Ni,Zn)O High-Entropy Oxide and Its Physicochemical Properties

  • Mateusz Balcerzak
  • Kenichi Kawamura
  • Rafał Bobrowski
  • Paweł Rutkowski
  • Tomasz BrylewskiEmail author
Open Access


The study describes the physicochemical properties of transition metal (Co,Cu,Mg,Ni,Zn)O high-entropy oxide prepared using mechanochemical synthesis (MS) followed by thermal treatment, as well as the structural evolutions in the powder with milling time. The microstructure and electrical properties of the materials were studied using x-ray diffraction, scanning electron microscopy—energy dispersive spectroscopy and electrochemical impedance spectroscopy. The powders obtained after 30 h and 100 h of MS contained a mixture of two phases with a rock salt structure and, in addition, about 11 wt.% of Co3O4. Sintering these materials for 10 h in air at 1273 K led to the formation of a single-phase, solid solution with a rock salt structure. The developed sinters exhibited a fine-crystalline structure of grains and a uniform distribution of elements. The highest electrical conductivity was measured at 1148 K, and it was equal to 8.03 × 10−2 S cm−1.


Milling electrical conductivity transition metal oxides  high-entropy oxides 



This work was performed as part of the statutory activities of the Department of Physical Chemistry and Modeling, Faculty of Materials Science and Ceramics, AGH University of Science and Technology (Contract No. 11.11.160. 768) and the Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Management, Poznan University of Technology (No. 02/24/DSPB/4657). The authors would also like to thank Professor Konrad Świerczek from the AGH-UST Faculty of Energy and Fuels for performing high-temperature XRD studies as well as Professor Mitsutoshi Ueda from the Tokyo Institute of Technology for the SEM–EDS analysis he performed.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


  1. 1.
    B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, Science 345, 1153 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, and T. Li, Sci. Rep. 4, 6200 (2014).CrossRefGoogle Scholar
  3. 3.
    Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).CrossRefGoogle Scholar
  4. 4.
    S.-K. Chen and Y.-F. Kao, AIP Adv. 2, 012111 (2012).CrossRefGoogle Scholar
  5. 5.
    M.-H. Tsai, J.-W. Yeh, and J.-Y. Gan, Thin Solid Films 516, 5527 (2008).CrossRefGoogle Scholar
  6. 6.
    P.-K. Huang, J.-W. Yeh, T.-T. Shun, and S.-K. Chen, Adv. Eng. Mater. 6, 74 (2004).CrossRefGoogle Scholar
  7. 7.
    Y.-F. Kao, S.-K. Chen, J.-H. Sheu, J.-T. Lin, W.-E. Lin, J.-W. Yeh, S.-J. Lin, T.-H. Liou, and C.-W. Wang, Int. J. Hydrogen Energy 35, 9046 (2010).CrossRefGoogle Scholar
  8. 8.
    A.D. Pogrebnjak, A.A. Bagdasaryan, I.V. Yakushchenko, and V.M. Beresnev, Russ. Chem. Rev. 83, 1027 (2014).CrossRefGoogle Scholar
  9. 9.
    J. Gild, Y. Zhang, T. Harrington, S. Jiang, T. Hu, M.C. Quinn, W.M. Mellor, N. Zhou, K. Vecchio, and J. Luo, Sci. Rep. 6, 37946 (2016).CrossRefGoogle Scholar
  10. 10.
    J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei, and W. Wang, Ceram. Int. 44, 22014 (2018).CrossRefGoogle Scholar
  11. 11.
    C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria, Nat. Commun. 6, 8485 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Bérardan, S. Franger, D. Dragoe, A.K. Meena, and N. Dragoe, Phys. Status Solidi RRL 10, 328 (2016).CrossRefGoogle Scholar
  13. 13.
    D. Bérardan, S. Franger, A.K. Meena, and N. Dragoe, J. Mater. Chem. A 4, 9536 (2016).CrossRefGoogle Scholar
  14. 14.
    Z. Rak, C.M. Rost, M. Lim, P. Sarkar, C. Toher, J.-P. Maria, and D.W. Brenner, J. Appl. Phys. 120, 095105 (2016).CrossRefGoogle Scholar
  15. 15.
    R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravanhanula, C. Kübel, S.S. Bhanttacharya, A.S. Gandhi, and H. Kahn, Mater. Res. Lett. 5, 102 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Bérardan, A.K. Meena, S. Franger, C. Herrero, and N. Dragoe, J. Alloys Compd. 704, 693 (2017).CrossRefGoogle Scholar
  17. 17.
    C.M. Rost, Z. Rak, D.W. Brenner, and J.-P. Maria, J. Am. Ceram. Soc. 100, 2732 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Jiang, T. Hu, J. Gild, N. Zhou, J. Nie, M. Qin, T. Harrington, K. Vecchio, and J. Luo, Scr. Mater. 142, 116 (2018).CrossRefGoogle Scholar
  19. 19.
    J. Dąbrowa, M. Stygar, A. Mikuła, A. Knapik, K. Mroczka, W. Tejchman, M. Danielewski, and M. Martin, Mater. Lett. 216, 32 (2018).CrossRefGoogle Scholar
  20. 20.
    A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya, J. Eur. Ceram. Soc. 37, 747 (2017).CrossRefGoogle Scholar
  21. 21.
    C. Pathak, D. Mishra, V. Agarwala, and M. Mandal, Ceram. Int. 38, 6191 (2012).CrossRefGoogle Scholar
  22. 22.
    Y.X. Li, W.F. Chen, X.Z. Zhou, Z.Y. Gu, and C.M. Chen, Mater. Lett. 59, 48 (2005).CrossRefGoogle Scholar
  23. 23.
    J. Lu, K.M. Ng, and S. Yang, Ind. Eng. Chem. Res. 47, 1095 (2008).CrossRefGoogle Scholar
  24. 24.
    M. Seyedia, S. Haratiana, and J. Vahdati Khakia, Procedia Mater Sci 11, 309 (2015).CrossRefGoogle Scholar
  25. 25.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  26. 26.
    Y.-M. Chiang, D.P. Birnie, and W.D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering (Hoboken: Wiley, 1997), pp. 15–16.Google Scholar
  27. 27.
    S. Chevalier, G. Caboche, K. Przybylski, and T. Brylewski, J. Appl. Electrochem. 39, 529 (2009).CrossRefGoogle Scholar
  28. 28.
    H.M. O’Bryan and G. Parravano, Reactivity of Solids (Amsterdam: Elsevier Publishing Co., 1965), p. 256.Google Scholar
  29. 29.
    C.E. Lyman, D.E. Newbury, J. Goldstein, D.B. Williams, A.D. Romig Jr, J. Armstrong, P. Echlin, C. Fiori, D.C. Joy, E. Lifshin, and K.-R. Peters, Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy: A Laboratory Workbook (Berlin: Springer Science & Business Media, 2012), p. 407.Google Scholar
  30. 30.
    H. Bordeneuve, C. Tenailleau, S. Guillemet-Fritsch, R. Smith, E. Suard, and A. Rousset, Solid State Sci. 12, 379 (2010).CrossRefGoogle Scholar
  31. 31.
    B. Talic, Metallic Interconnects for Solid Oxide Fuel Cells: High Temperature Corrosion and Protective Spinel Coatings. Ph.D. thesis, Publisher NTNU, Series Doctoral thesis at NTNU;2016:221 (2016)Google Scholar
  32. 32.
    E.J.W. Verwey, Semiconducting Materials (London: Butterworths Scientific Publications, 1951).Google Scholar

Copyright information

© The Author(s) 2019

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mateusz Balcerzak
    • 1
  • Kenichi Kawamura
    • 2
  • Rafał Bobrowski
    • 3
  • Paweł Rutkowski
    • 3
  • Tomasz Brylewski
    • 3
    Email author
  1. 1.Institute of Materials Science and EngineeringPoznan University of TechnologyPoznanPoland
  2. 2.Department of Metallurgy and Ceramics Sciences, Graduate School of Science and EngineeringTokyo Institute of TechnologyTokyoJapan
  3. 3.Faculty of Materials Science and CeramicsAGH University of Science and TechnologyKrakówPoland

Personalised recommendations