Advertisement

A Tunable Ultra-Broadband THz Absorber Based on a Phase Change Material

  • Xin-ru Kong
  • Hai-feng ZhangEmail author
  • Ri-na Dao
Article
  • 5 Downloads

Abstract

In this paper, by using a kind of phase change material, a tailored ultra-broadband THz metamaterial absorber is realized, which is based on vanadium dioxide (VO2). Compared with the prior works, the tunable absorption bandwidth can be obtained in the proposed tunable phase change material absorber (TPMA), which can be manipulated by the temperature. The absorption of such a TPMA goes beyond 90% in the frequency region 10.28–15.56 THz and its relative bandwidth is 40.9% when the temperature is equal to or larger than 68°C, and excellent frequency detectability also can be observed. However, when the temperature is less than 68°C, the present TPMA can act as a perfect reflector. The absorption also is investigated for oblique incidence, which shows that the proposed TPMA is incident angle-dependent. The relationships between the structure parameters and the features of absorption also are investigated. The distribution of current surface, the electric field and power loss density are used to elucidate the physical mechanism of such a TPMA. In addition, a reconfigurable device can be realized with such a TPMA by tailoring different temperatures.

Keywords

Ultra-broadband absorber tunable absorption phase change material vanadium dioxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B.X. Wang, L.L. Wang, G.Z. Wang, W.Q. Huang, X.F. Li, and X. Zhai, Appl. Phys. Express 7, 082601 (2014).CrossRefGoogle Scholar
  2. 2.
    N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Li, S.Q. Xiao, Y.Y. Bai, and B.Z. Wang, IEEE Antenn. Wirel. Propag. Lett. 11, 748 (2012).CrossRefGoogle Scholar
  4. 4.
    F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, Appl. Phys. Lett. 100, 103506 (2012).CrossRefGoogle Scholar
  5. 5.
    J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, and Y. Ma, Appl. Phys. Lett. 105, 4773 (2014).Google Scholar
  6. 6.
    T. Han, W. Guo, and Y. Liu, Opt. Express 24, 20586 (2016).CrossRefGoogle Scholar
  7. 7.
    B. Xu, C. Gu, Z. Li, and Z. Niu, Opt. Express 21, 23803 (2013).CrossRefGoogle Scholar
  8. 8.
    H.F. Zhang, H. Zhang, Y. Yao, J. Yang, and J.X. Liu, IEEE Photonics J. 10, 5700610 (2018).Google Scholar
  9. 9.
    R.W. Ziolkowski, IEEE Trans. Antennas Propag. 56, 691 (2008).CrossRefGoogle Scholar
  10. 10.
    R.W. Ziolkowski, P. Jin, and C.C. Lin, Proc. IEEE 99, 1720 (2011).CrossRefGoogle Scholar
  11. 11.
    E. Verney, B. Sauviac, and C.R. Simovski, Phys. Lett. A 331, 244 (2004).CrossRefGoogle Scholar
  12. 12.
    K. Aydin, I. Bulu, and E. Ozbay, Opt. Express 13, 8753 (2005).CrossRefGoogle Scholar
  13. 13.
    W.S. Yuan and Y.Z. Cheng, Appl. Phys. A 117, 1915 (2014).CrossRefGoogle Scholar
  14. 14.
    T. Cao, C. Wei, R.E. Simpson, L. Zhang, and M.J. Cryan, Opt. Mater. Express 3, 1101 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Hong, S.A. Maier, X. Luo, X. Li, and Y. Chen, Photonics Res. 3, 54 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Tian and Z.Y. Li, Photonics Res. 4, 146 (2016).CrossRefGoogle Scholar
  17. 17.
    X. Tian and Z.Y. Li, Plasmonics 13, 1393 (2018).CrossRefGoogle Scholar
  18. 18.
    Z. Yang and S. Ramanathan, IEEE Photonics J. 7, 1 (2015).Google Scholar
  19. 19.
    H. Kocer, S. Butun, B. Banar, K. Wang, S. Tongay, J. Wu, and K. Aydin, Appl. Phys. Lett. 106, 161104 (2015).CrossRefGoogle Scholar
  20. 20.
    R. Naorem, G. Dayal, S.A. Ramakrishna, B. Rajeswaranb, and A.M. Umarjib, Opt. Commun. 346, 154 (2015).CrossRefGoogle Scholar
  21. 21.
    J. Schoiswohl, G. Kresse, S. Surnev, M. Sock, M.G. Ramsey, and F.P. Netzer, Phys. Rev. Lett. 92, 206103 (2004).CrossRefGoogle Scholar
  22. 22.
    A. Cavalleri, C. Tóth, C.W. Siders, J.A. Squier, F. Ráksi, P. Forget, and J.C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).CrossRefGoogle Scholar
  23. 23.
    A. Hendaoui, N. Émond, S. Dorval, M. Chakera, and E. Haddadb, Sol. Energy Mater. Sol. C 117, 494 (2013).CrossRefGoogle Scholar
  24. 24.
    W. Li, S. Chang, X. Wang, L. Lin, and J. Bai, Optoelectron. Lett. 10, 180 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering and College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.National Electronic Science and Technology Experimental Teaching Demonstrating CenterNanjing University of Posts and TelecommunicationsNanjingChina
  3. 3.National Information and Electronic Technology Virtual Simulation Experiment Teaching CenterNanjing University of Posts and TelecommunicationsNanjingChina
  4. 4.Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing University of Aeronautics and Astronautics), Ministry of EducationNanjing University of Aeronautics and AstronauticsNanjingChina
  5. 5.State Key Laboratory of Millimeter Waves of Southeast UniversityNanjingChina
  6. 6.School of Optoelectronic EngineeringNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations