Advertisement

Synthesis of Nano-Flower Metal–Organic Framework/Graphene Composites As a High-Performance Electrode Material for Supercapacitors

  • Marziyeh Azadfalah
  • Arman SedghiEmail author
  • Hadi Hosseini
Article
  • 1 Downloads

Abstract

Great emphasis has always been placed on exploring electrode materials with high conductivity and high level of electrolyte availability for supercapacitors as next-generation energy storage devices. Recently, metal–organic frameworks (MOFs) have been used as electrode materials for supercapacitors due to their suitability of porosity and high surface area, and their structure and synthesis have been widely studied. However, using single-component metal–organic frameworks in supercapacitors results in poor electrical conductivity, insufficient stability, and poor mechanical properties, thwarting the effect of high capacity and efficient performance. In this paper, a useful strategy was employed to reduce the electric resistance of metal–organic frameworks by interlacing metal–organic framework crystals with graphene. Cu-MOFs/graphene hybrid composites were successfully fabricated and then characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, powder x-ray diffraction, Raman spectroscopy, Brunauer–Emmett–Teller and electrochemical techniques. The prepared nanocomposite showed outstanding electrochemical performance owing to the synergistic effects of the Cu-MOFs specific structure and high conductivity of graphene, yielding a high specific capacitance of 482 F g−1 at a scan rate of 10 mV s−1 and a good cycle lifetime along with 93.8% specific capacitance retaining at current density of 0.3 A g−1 after 1000 cycles in 6 M KOH aqueous electrolyte. Electrochemical examinations confirmed the existence of synergistic effects between Cu-MOF and graphene in the fabricated hybrid composites, making it an ideal advanced electrode candidate for supercapacitor applications. Moreover, a simple asymmetric supercapacitor was assembled in a 6 M KOH electrolyte with Cu-MOF/G and activated carbon as positive and negative electrodes, respectively, which renders high energy density (34.5 Wh kg−1) and power density (1350 W kg−1) at the current density of 0.5 A g−1.

Keywords

Supercapacitor hybrid composites metal–organic framework graphene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    T. Yoon, T. Bok, C. Kim, Y. Na, S. Park, and K.S. Kim, ACS Nano 11, 4808 (2017).CrossRefGoogle Scholar
  2. 2.
    M. Tamaddoni Saray and H. Hosseini, Electrochim. Acta 222, 505 (2016).CrossRefGoogle Scholar
  3. 3.
    L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, and B. Wang, Coord. Chem. Rev. 307, 361 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Wang, Y. Zhang, F. Zhou, Z. Sun, F. Huang, Y. Yu, L. Chen, and M. Pan, J. Energy Storage 7, 99 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Yang, P. Xiong, C. Zheng, H. Qiu, and M. Wei, J. Mater. Chem. A 2, 16640 (2014).CrossRefGoogle Scholar
  6. 6.
    M.Y. Ghotbi and M. Azadfalah, Mater. Des. 89, 708 (2016).CrossRefGoogle Scholar
  7. 7.
    M.S. Rahmanifar, H. Hesari, A. Noori, M.Y. Masoomi, A. Morsali, and M.F. Mousavi, Electrochim. Acta 275, 76 (2018).CrossRefGoogle Scholar
  8. 8.
    Q. Chen, S. Lei, P. Deng, X. Ou, L. Chen, W. Wang, Y. Xiao, and B. Cheng, J. Mater. Chem. A 5, 19323 (2017).CrossRefGoogle Scholar
  9. 9.
    P.C. Banerjee, D.E. Lobo, R. Middag, W.K. Ng, M.E. Shaibani, and M. Majumder, ACS Appl. Mater. Interfaces 7, 3655 (2015).CrossRefGoogle Scholar
  10. 10.
    W. Xia, C. Qu, Z. Liang, B. Zhao, S. Dai, B. Qiu, Y. Jiao, Q. Zhang, X. Huang, W. Guo, D. Dang, R. Zou, D. Xia, Q. Xu, and M. Liu, Nano Lett. 17, 2788 (2017).CrossRefGoogle Scholar
  11. 11.
    P. Pachfule, D. Shinde, M. Majumder, and Q. Xu, Nat. Chem. 8, 718 (2016).CrossRefGoogle Scholar
  12. 12.
    P. Wen, P. Gong, J. Sun, J. Wang, and S. Yang, J. Mater. Chem. A 3, 13874 (2015).CrossRefGoogle Scholar
  13. 13.
    Y. Zhou, Z. Mao, W. Wang, Z. Yang, and X. Liu, ACS Appl. Mater. Interfaces 8, 28904 (2016).CrossRefGoogle Scholar
  14. 14.
    X. Xu, W. Shi, P. Li, S. Ye, C. Ye, H. Ye, T. Lu, A. Zheng, J. Zhu, L. Xu, M. Zhong, and X. Cao, Chem. Mater. 29, 6058 (2017).CrossRefGoogle Scholar
  15. 15.
    Q. Wang, Y. Yang, F. Gao, J. Ni, Y. Zhang, and Z. Lin, ACS Appl. Mater. Interfaces 8, 32477 (2016).CrossRefGoogle Scholar
  16. 16.
    C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B.M. Deglee, Y. Chen, K.S. Walton, R. Zou, and M. Liu, ACS Energy Lett. 2, 1263 (2017).CrossRefGoogle Scholar
  17. 17.
    M. Jahan, Z. Liu, and K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013).CrossRefGoogle Scholar
  18. 18.
    B. Li, Y. Fu, H. Xia, and X. Wang, Mater. Lett. 122, 193 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Xu, C. Yang, Y. Xue, C. Wang, J. Cao, and Z. Chen, Electrochim. Acta 211, 595 (2016).CrossRefGoogle Scholar
  20. 20.
    P. Wen, Z. Li, P. Gong, J. Sun, J. Wang, and S. Yang, RSC Adv. 6, 13264 (2016).CrossRefGoogle Scholar
  21. 21.
    E. Jokar, S. Shahrokhian, E. Asadian, and H. Hosseini, J. Energy Storage 17, 465 (2018).CrossRefGoogle Scholar
  22. 22.
    M.B. Tayel, M.M. Soliman, S. Ebrahim, and M.E. Harb, J. Electron. Mater. 45, 820 (2015).CrossRefGoogle Scholar
  23. 23.
    G. Majano and J. Pérez-Ramírez, Adv. Mater. 25, 1052 (2013).CrossRefGoogle Scholar
  24. 24.
    H. Nourmohammadi Miankushki, A. Sedghi, and B. Saeid, J. Energy Storage 19, 201 (2018).CrossRefGoogle Scholar
  25. 25.
    N.L. Torad, M. Hu, S. Ishihara, H. Sukegawa, A.A. Belik, M. Imura, K. Ariga, Y. Sakka, and Y. Yamauchi, Small 10, 2096 (2014).CrossRefGoogle Scholar
  26. 26.
    S.K. Kandasamy and K. Kandasamy, J. Inorg. Organomet. Polym. Mater. 28, 559 (2018).CrossRefGoogle Scholar
  27. 27.
    S. Loera-Serna, M.A. Oliver-Tolentino, M. De Lourdes López-Núñez, A. Santana-Cruz, A. Guzmán-Vargas, R. Cabrera-Sierra, H.I. Beltrán, and J. Flores, J. Alloys Compd. 540, 113 (2012).CrossRefGoogle Scholar
  28. 28.
    M. Saraf, R. Rajak, and S.M. Mobin, J. Mater. Chem. A 4, 16432 (2016).CrossRefGoogle Scholar
  29. 29.
    K.S. Lin, A.K. Adhikari, C.N. Ku, C.L. Chiang, and H. Kuo, Int. J. Hydrogen Energy 37, 13865 (2012).CrossRefGoogle Scholar
  30. 30.
    C. Petit, J. Burress, and T.J. Bandosz, Carbon 49, 563 (2011).CrossRefGoogle Scholar
  31. 31.
    Z. Bian, J. Xu, S. Zhang, X. Zhu, H. Liu, and J. Hu, Langmuir 31, 7410 (2015).CrossRefGoogle Scholar
  32. 32.
    H.N. Miankushki, A. Sedghi, and S. Baghshahi, Int. J. Electrochem. Sci. 13, 2462 (2018).CrossRefGoogle Scholar
  33. 33.
    H.N. Miankushki, A. Sedghi, and S. Baghshahi, J. Solid State Electrochem. 22, 3317 (2018).CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng, S. Lawes, and X. Sun, Energy Storage Mater. 2, 35 (2016).CrossRefGoogle Scholar
  35. 35.
    P. Srimuk, S. Luanwuthi, A. Krittayavathananon, and M. Sawangphruk, Electrochim. Acta 157, 69 (2015).CrossRefGoogle Scholar
  36. 36.
    F.B. Ajdari, E. Kowsari, and A. Ehsani, J. Solid State Chem. 265, 155 (2018).CrossRefGoogle Scholar
  37. 37.
    D.Y. Lee, D.V. Shinde, E.K. Kim, W. Lee, I.W. Oh, N.K. Shrestha, J.K. Lee, and S.H. Han, Microporous Mesoporous Mater. 171, 53 (2013).CrossRefGoogle Scholar
  38. 38.
    W. Zhang, Y. Tan, Y. Gao, J. Wu, and J. Hu, J. Appl. Electrochem. 46, 441 (2016).CrossRefGoogle Scholar
  39. 39.
    R.R. Salunkhe, Y. Kamachi, N.L. Torad, S.M. Hwang, Z. Sun, S.X. Dou, J.H. Kim, and Y. Yamauchi, J. Mater. Chem. A 2, 19848 (2014).CrossRefGoogle Scholar
  40. 40.
    J.W. Jeon, R. Sharma, P. Meduri, B.W. Arey, H.T. Schaef, J.L. Lutkenhaus, J.P. Lemmon, P.K. Thallapally, M.I. Nandasiri, B.P. McGrail, and S.K. Nune, ACS Appl. Mater. Interfaces 6, 7214 (2014).CrossRefGoogle Scholar
  41. 41.
    J. Hong, S. Park, and S. Kim, Electrochim. Acta 311, 62 (2019).CrossRefGoogle Scholar
  42. 42.
    Y. Wang, S. Nie, Y. Liu, W. Yan, S. Lin, and G. Cheng, Polymers 11, 821 (2019).CrossRefGoogle Scholar
  43. 43.
    B.B. Khatua, A.K. Das, R. Bera, A. Maitra, S.K. Karan, S. Paria, L. Halder, S.K. Si, and A. Bera, J. Mater. Chem. A 5, 22242 (2017).CrossRefGoogle Scholar
  44. 44.
    J. Yang, Z. Ma, W. Gao, and M. Wei, Chem. Eur. J. 23, 631 (2017).CrossRefGoogle Scholar
  45. 45.
    F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, and H. Zhang, J. Am. Chem. Soc. 138, 6924 (2016).CrossRefGoogle Scholar
  46. 46.
    L. Wang, X. Feng, L. Ren, Q. Piao, J. Zhong, Y. Wang, H. Li, Y. Chen, and B. Wang, J. Am. Chem. Soc. 137, 4920 (2015).CrossRefGoogle Scholar
  47. 47.
    R. Rajak, M. Saraf, A. Mohammad, and S.M. Mobin, J. Mater. Chem. A 5, 17998 (2017).CrossRefGoogle Scholar
  48. 48.
    D.Y. Lee, S.J. Yoon, N.K. Shrestha, S.H. Lee, H. Ahn, and S.H. Han, Microporous Mesoporous Mater. 153, 163 (2012).CrossRefGoogle Scholar
  49. 49.
    K.M. Choi, H.M. Jeong, J.H. Park, Y. Zhang, and J.K. Kang, ACS Nano 8, 7451 (2014).CrossRefGoogle Scholar
  50. 50.
    Y. Tan, W. Zhang, Y. Gao, J. Wu, and B. Tang, RSC Adv. 5, 17601 (2015).CrossRefGoogle Scholar
  51. 51.
    A.R. Ramachandran, C. Zhao, D. Luo, K. Wang, and F. Wang, Appl. Surf. Sci. 460, 33 (2018).CrossRefGoogle Scholar
  52. 52.
    S.N. Ansari, M. Saraf, A.K. Gupta, and S.M. Mobin, Chem. Asian J. 20, 1 (2019). https://doi.org/10.1002/asia.201900629.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Marziyeh Azadfalah
    • 1
  • Arman Sedghi
    • 1
    Email author
  • Hadi Hosseini
    • 2
  1. 1.Department of Materials Science and Engineering, Faculty of EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.Faculty of ChemistryShahid Beheshti UniversityTehranIran

Personalised recommendations