Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6771–6776 | Cite as

Preparation and Microwave Dielectric Properties of Polyethylene/TiO2 Composites

  • Huixia Lin
  • Zhangzhao WengEmail author
  • Zhaoxian Xiong
Article
  • 13 Downloads

Abstract

Rutile-phased TiO2-filled polyethylene (PE/TiO2) composites with dielectric constant (εr) ranging from 3.2 to 10.45 have been prepared by melt-mixing method and hot-molding techniques. The dielectric constant and dielectric loss (tanδ) of PE/TiO2 composites show an increasing trend, whereas the relative density, coefficient of thermal expansion and tensile strength showed a monotonically descending trend with increasing the rutile-phased TiO2 contents. A comparison of experimental and theoretical results shows large deviation at high filler contents. The prepared rutile-phased TiO2-filled PE composites were well suited for microwave application, especially for its ultra-low loss tangent (< 1.0 × 10−3).

Keywords

Microwave properties PE/rutile-phased TiO2 composites CTE mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to Mr. Q.L. Li, Vice President, Hollyland (China) Electronic Technology Corporation Limited, for extending facilities to carry out this work.

References

  1. 1.
    P.S. Anjana, M.T. Sebastian, M.N. Suma, and P. Mohanan, Int. J. Appl. Ceram. Technol. 5, 325 (2008).CrossRefGoogle Scholar
  2. 2.
    Z. Weng, Z. Han, F. Xiao, H. Xue, and D. Peng, Ceram. Int. 44, 14145 (2018).CrossRefGoogle Scholar
  3. 3.
    Z. Weng, H. Aminirastabi, Z. Xiong, and H. Xue, J. Alloys Compd. 725, 1063 (2017).CrossRefGoogle Scholar
  4. 4.
    K.P. Murali, S. Rajesh, K.S. Jacob, O. Prakash, A.R. Kulkarni, and R. Ratheesh, J. Mater. Sci. Mater. Electron. 21, 192 (2010).CrossRefGoogle Scholar
  5. 5.
    Y. Yuan, D. Yu, Y. Yin, B. Tang, E. Li, and S. Zhang, J. Mater. Sci. Mater. Electron. 27, 13288 (2016).CrossRefGoogle Scholar
  6. 6.
    J.I. Hong, P. Winberg, L.S. Schadler, and R.W. Siegel, Mater. Lett. 59, 473 (2005).CrossRefGoogle Scholar
  7. 7.
    A.J. Bur, Polymer 26, 963 (1985).CrossRefGoogle Scholar
  8. 8.
    X. Huang, Q. Ke, C. Kim, H. Zhong, P. Wei, G. Wang, F. Liu, and P. Jiang, Polym. Eng. Sci. 47, 1052 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Kutz, Handbook of Materials Selection (Hoboken: Wiley, 2002).CrossRefGoogle Scholar
  10. 10.
    Z. Weng, C. Wu, Z. Xiong, Y. Feng, H. Aminirastabi, C. Song, and H. Xue, J. Eur. Ceram. Soc. 37, 4667 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Krupka, S.A. Gabelich, K. Derzakowski, and B.M. Pierce, Meas. Sci. Technol. 10, 1004 (1999).CrossRefGoogle Scholar
  12. 12.
    J. Krupka, R.G. Geyer, J. Baker-Jarvis, J. Ceremuga, 7th International Conference on Dielectric Materials, Measurements and Applications (Conf. Publ. No. 430). IET, p. 21 (1996).Google Scholar
  13. 13.
    Z. Weng, R. Guan, and Z. Xiong, J. Alloys Compd. 695, 3517 (2016).CrossRefGoogle Scholar
  14. 14.
    K. Lichtenecker, SPIE Milest. Ser. MS 120, 377 (1996).Google Scholar
  15. 15.
    Y. Rao, J. Qu, T. Marinis, and C.P. Wong, IEEE Trans. Compon. Packag. Technol. 23, 680 (2000).CrossRefGoogle Scholar
  16. 16.
    Y. Sun, Z. Zhang, and C.P. Wong, Polymer 46, 2297 (2005).CrossRefGoogle Scholar
  17. 17.
    Y. Yuan, S.R. Zhang, X.H. Zhou, and E.Z. Li, Mater. Chem. Phys. 141, 175 (2013).CrossRefGoogle Scholar
  18. 18.
    T.S. Sasikala and M.T. Sebastian, Ceram. Int. 42, 7551 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, and R. Ratheesh, Mater. Sci. Eng. B 163, 1 (2009).CrossRefGoogle Scholar
  20. 20.
    S. Rajesh, K.P. Murali, K.V. Rajani, and R. Ratheesh, Int. J. Appl. Ceram. Technol. 6, 553 (2010).CrossRefGoogle Scholar
  21. 21.
    Y. Yuan, Y.R. Cui, K.T. Wu, Q.Q. Huang, and S.R. Zhang, J. Polym. Res. 21, 380 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Environment and Public HealthXiamen Huaxia UniversityXiamenChina
  2. 2.China Electronic Product Reliability and Environmental Testing Research InstituteGuangzhouChina
  3. 3.Municipal Key Laboratory of Electronic Ceramics and Components, College of MaterialsXiamen UniversityXiamenChina

Personalised recommendations