Journal of Electronic Materials

, Volume 48, Issue 10, pp 6176–6182 | Cite as

The Combination of Bipolar Electrolytic and Galvanic Method to Synthesize CuPt Nano-Alloy Electrocatalyst for Direct Ethanol Fuel Cell

  • Pham Van VinhEmail author
  • Dang Duc Dung
  • Nguyen Bich Ngan
  • Tran Xuan Bao


CuPt nano alloy-particles were successfully synthesized by a combination of the methods of bipolar electrolytic and galvanic replacement. Cu2O nanoparticles prepared by a bipolar electrolytic method were used as the sacrificial templates for galvanic replacement reactions with H2PtCl6 solutions. The size of Cu2O nanoparticles was optimized by changing the electrolytic parameters to obtain fine nanoparticles. SEM and TEM analyses showed that Cu2O nanoparticles were grown in a crystal shape with a grain size of about 100 nm. The XRD results indicated that Cu2O nanoparticles were grown in a face-centered cubic structured crystal. The effects of the amount of H2PtCl6 solution on the structure, morphology, composition and electrocatalysis of CuPt were investigated. The phase analysis by XRD showed the presence of CuPt crystalline phases with a rhomb-centered structure. The SEM images indicated that the crystalline shape of Cu2O was turned into a spherical shape with the size expanded to 140 nm after galvanic reaction. The absorption analysis showed that there was one absorption peak at a wavelength of 500 nm for Cu2O while no absorption peak was observed for CuPt alloys. Additionally, compositional analysis by EDX showed that the main components of the alloys were Cu and Pt. The presence of O on the samples indicated that the galvanic reactions were not complete. The cyclic voltammetry measurement showed that CuPt nano alloy-particles exhibit better ethanol oxidation in an alkali medium compared with bare Pt.


Bipolar electrolytic CuPt nano alloy-particles ethanol oxidation Cu2O nanoparticles galvanic replacement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by Hanoi National University of Education.


  1. 1.
    B. Braunchweig, D. Hibbitts, M. Neurock, and A. Wieckowski, Catal. Today 202, 197 (2013).CrossRefGoogle Scholar
  2. 2.
    M.A.F. Akhairi and S.K. Kamarudin, Int. J. Hydrogen Energy 41, 4214 (2016).CrossRefGoogle Scholar
  3. 3.
    V.V. Pham, V.-T. Ta, and C. Sunglae, Int. J. Hydrogen Energy 42, 13192 (2017).CrossRefGoogle Scholar
  4. 4.
    Q. He, Y. Shen, K. Xiao, J. Xi, and X. Qiu, Int. J. Hydrogen Energy 41, 20709 (2016).CrossRefGoogle Scholar
  5. 5.
    D. Soundararajan, J.H. Park, K.H. Kim, and J.M. Ko, Curr. Appl. Phys. 12, 854 (2012).CrossRefGoogle Scholar
  6. 6.
    Q. Li, P. Xu, B. Zhang, G. Wu, H. Zhao, E. Fu, and H.L. Wang, Nanoscale 5, 7397 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Huang, Y. Jiang, C. Jin, J. Ren, Z. Zhou, and L. Guan, Electrochim. Acta 125, 29 (2014).CrossRefGoogle Scholar
  8. 8.
    K.J. Andersson and I. Chorkendorff, Surf. Sci. 604, 1733 (2010).CrossRefGoogle Scholar
  9. 9.
    J. Maya-Cornejo, R. Carrera-Cerritos, D. Sebastián, J. Ledesma-García, L.G. Arriaga, A.S. Aricò, and V. Baglio, Int. J. Hydrogen Energy 42, 27919 (2017).CrossRefGoogle Scholar
  10. 10.
    M. Ammam and E. Bradley Easton, J. Power Sources 222, 79 (2013).CrossRefGoogle Scholar
  11. 11.
    K.D. Gilroy, P. Farzinpour, A. Sundar, R.A. Hughes, and S. Neretina, Chem. Mater. 26, 3340 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Papaderakis, I. Mintsouli, J. Georgieva, and S. Sotiropoulos, Catalysts 7, 80 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Bao, H.A.N. Zhu, P.A.N. Wang, M. Zou, M. Du, and M. Zhang, NANO 8, 1350062 (2013).CrossRefGoogle Scholar
  14. 14.
    V.M. Maksimović, L.J. Pavlović, M.G. Pavlović, and M.V. Tomić, J. Appl. Electrochem. 39, 2545 (2009).CrossRefGoogle Scholar
  15. 15.
    A.M. Awad, M.E. Aref, A.E. Rahman, and M.A. Rafea, J. Am. Sci. 9, 137 (2010).Google Scholar
  16. 16.
    G. Orhan and G. Hapçı, Powder Technol. 201, 57 (2010).CrossRefGoogle Scholar
  17. 17.
    N. Sivashankar, S. Karthick, and N. Kawin, Int. J. Sci. Technol. Eng. 3, 262 (2016).Google Scholar
  18. 18.
    X. Le Guével, V. Trouillet, C. Spies, G. Jung, and M. Schneider, J. Phys. Chem. C 116, 6047–6051 (2012).CrossRefGoogle Scholar
  19. 19.
    F. Mafune, J.-Y. Kohno, Y. Takeda, and T. Kondow, J. Phys. Chem. B 107, 4218 (2003).CrossRefGoogle Scholar
  20. 20.
    H.P. Singh, N. Gupta, S.K. Sharma, and R.K. Sharma, Colloids Surf. A 416, 43 (2013).CrossRefGoogle Scholar
  21. 21.
    Y. Liu, L. Chen, T. Cheng, H. Guo, B. Sun, and Y. Wang, J. Power Sources 395, 66 (2018).CrossRefGoogle Scholar
  22. 22.
    Y. Wang, S. Zou, and W.-B. Cai, Catalysts 5, 1507 (2015).CrossRefGoogle Scholar
  23. 23.
    M. González Pereira, M. Dávila Jiménez, M.P. Elizalde, A. Manzo-Robledo, and N. Alonso-Vante, Electrochim. Acta 49, 3917 (2004).CrossRefGoogle Scholar
  24. 24.
    G. Blyholder, J. Phys. Chem. 68, 2772 (1964).CrossRefGoogle Scholar
  25. 25.
    V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, and N.M. Markovic, Nat. Mater. 6, 241 (2007).CrossRefGoogle Scholar
  26. 26.
    P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M.F. Toney, and A. Nilsson, Nat.Chem. 2, 454 (2010).CrossRefGoogle Scholar
  27. 27.
    C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.C. Chang, A.P. Paulikas, D. Tripkovic, J. Pearson, K.L. More, N.M. Markovic, and V.R. Stamenkovic, J. Am. Chem. Soc. 133, 14396 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Pham Van Vinh
    • 1
    Email author
  • Dang Duc Dung
    • 2
  • Nguyen Bich Ngan
    • 3
  • Tran Xuan Bao
    • 4
  1. 1.Faculty of PhysicsHanoi National University of EducationHanoiVietnam
  2. 2.School of Engineering PhysicsHa Noi University of Science and TechnologyHanoiVietnam
  3. 3.Faculty of ChemistryHanoi National University of EducationHanoiVietnam
  4. 4.Department of Emerging Material ScienceDaegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea

Personalised recommendations