Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6724–6734 | Cite as

Subthreshold Performance Analysis of Germanium Source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel Field Effect Transistor for Ultra Low Power Applications

  • M. VenkateshEmail author
  • M. Suguna
  • N. B. Balamurugan
Article
  • 19 Downloads

Abstract

An improved subthreshold analytical model of Germanium source Dual Halo Dual Dielectric Triple Material Surrounding Gate Tunnel FET Ge(SRC)-DH-DD-TM-SG-TFET is proposed. The dielectric gate oxide structure is comprised of Silicon-dioxide and Hafnium oxide. The high-K dielectric materials overcomes the Short Channel Effects caused by ultrathin silicon devices. The subthreshold analysis is carried out by solving a 2-D Poisson’s equation using the parabolic approximation method. The electrical characteristics of Ge(SRC)-DH-DD-TM-SG-Tunnel FET are analyzed using a 3-D Sentaurus TCAD device simulator and compared with the silicon based single halo and triple material surrounding gate TFET structures. The proposed model shows a lower ambipolar current and a better ION/IOFF ratio of 106. Moreover, the influence of germanium/silicon in dual dielectric materials has reduced the tunneling barrier width and the ON current (10−4 A/μm) of the proposed device and improved at the level of CMOS transistors.

Keywords

High-K dielectric germanium source dual halo doping subthreshold surrounding gate TFET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Mallik, A. Chattopadhyay, and I.E.E.E. Trans, Electron Devices 59, 2 (2012).CrossRefGoogle Scholar
  2. 2.
    R.S. Muller, T.I. Kamins, and M. Chan, Device Electronics for Integrated Circuits, 1st ed. (New York: Wiley, 2003), p. 443.Google Scholar
  3. 3.
    J. Appenzeller, Y.M. Lin, J. Knoch, and P. Avouris, Phys. Rev. Lett. 93, 19 (2004).CrossRefGoogle Scholar
  4. 4.
    Q. Zhang, W. Zhao, A. Seabaugh, and I.E.E.E. Trans, Electron Devices 27, 4 (2006).CrossRefGoogle Scholar
  5. 5.
    W.Y. Choi, B.G. Park, J.D. Lee, and T.J.K. Liu, IEEE Electron Device Lett. 28, 8 (2007).CrossRefGoogle Scholar
  6. 6.
    R.M. Imenabad and M. Saremi, J. Electron. Mater. (2017).  https://doi.org/10.1007/s11664-017-5823-z.Google Scholar
  7. 7.
    W.Y. Choi, W. Lee, and I.E.E.E. Trans, Electron Devices 57, 9 (2010).Google Scholar
  8. 8.
    K.-H. Kao, A.S. Verhulst, W.G. Vandenberghe, B. Sorée, G. Groeseneken, K. De Meyer, and I.E.E.E. Trans, Electron Device 59, 2 (2012).CrossRefGoogle Scholar
  9. 9.
    S. Anand and R.K. Sarin, Superlattices Microstruct. 97, 60 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Vanitha, T.S.A. Samuel, and D. Nirmal, AEU-Int. J. Electron. Commun. 99, 34–39 (2019).Google Scholar
  11. 11.
    M. Luisier and G. Klimeck, J. Appl. Phys. 107, 8 (2010).CrossRefGoogle Scholar
  12. 12.
    Navajeet Bagga and Sudeb Dasgupta, IEEE Trans. Electron Device 64, 2 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Anand and R.K. Sarin, J. Electron. Mater. (2018).  https://doi.org/10.1007/s11664-018-6174-0.Google Scholar
  14. 14.
    A. Andrew Roobert, D. Gracia Nirmala Rani, S. Rajaram, IET Circ. Device Syst. (2019).https://digital-library.theiet.org/content/journals/10.1049/iet-cds.2018.5291;jsessionid=4nvar65uadqhn.x-iet-live-01
  15. 15.
    A.M. Ionescu and H. Riel, Nature 479, 7373 (2011).CrossRefGoogle Scholar
  16. 16.
    M.J. Kumar, S. Janardhanan, and I.E.E.E. Trans, Electron Devices 60, 10 (2013).CrossRefGoogle Scholar
  17. 17.
    G. Singh, S.I. Amin, S. Anand, and R.K. Sarin, Superlattices Microstruct. 92, 60 (2016).CrossRefGoogle Scholar
  18. 18.
    S. Mookerjea, R. Krishnan, S. Datta, and V. Narayanan, IEEE Electron Device Lett. 30, 10 (2009).CrossRefGoogle Scholar
  19. 19.
    G.E. Moore, IEEE Solid-State Circuits Soc. Newsl. 38, 33 (2006).CrossRefGoogle Scholar
  20. 20.
    J.G. Koomey, S. Berard, M. Sanchez, H. Wong, and I.E.E.E. Ann, Hist. Comput. 33, 46 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Kahng and I.E.E.E. Trans, Electron Devices 23, 655 (1976).CrossRefGoogle Scholar
  22. 22.
    E.O. Kane, J. Appl. Phys. 2, 1 (1961).Google Scholar
  23. 23.
    Sentaurus TCAD device user guide[online].Available:http://www.synopsys.com.
  24. 24.
    C. Sandow, J. Knoch, C. Urban, Q.T. Zhao, and S. Mantl, Solid State Electron. 53, 1126 (2009).CrossRefGoogle Scholar
  25. 25.
    A. Shaker, M. El Sabbagh, M.M. El-Banna, and I.E.E.E. Trans, Electron Devices 64, 3541 (2017).CrossRefGoogle Scholar
  26. 26.
    S. Chander and S. Baishya, IEEE Electron Device Lett. 36, 714 (2015).CrossRefGoogle Scholar
  27. 27.
    H. Lu and A. Seabaugh, IEEE J. Electron Devices Soc. 2, 44 (2014).CrossRefGoogle Scholar
  28. 28.
    C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, and I.E.E.E. Trans, Comput. Des. Integr. Circ. Syst. 7, 1164 (1988).Google Scholar
  29. 29.
    D.M. Caughey and R.E. Thomas, Proc. IEEE 55, 2192 (1967).CrossRefGoogle Scholar
  30. 30.
    J. Kretz, L. Dreeskornfeld, R. Schro¨ter, E. Landgraf, F. Hofmann, and W. Ro¨sner, Microelectron. Eng. 73–74, 803 (2004).CrossRefGoogle Scholar
  31. 31.
    L.-Y. Ma, A.N. Nordin, and N. Soin, Microsyst. Technol. 22, 537 (2016).CrossRefGoogle Scholar
  32. 32.
    B. Awadhiya, S. Pandey, K. Nigam, and P.N. Kondekar, Superlatt. Microstruct. 111, 293 (2017).CrossRefGoogle Scholar
  33. 33.
    S. Gupta, K. Nigam, S. Pandey, D. Sharma, P.N. Kondekar, and I.E.E.E. Trans, Electron Devices 64, 4731 (2017).CrossRefGoogle Scholar
  34. 34.
    A. Pal, A.K. Dutta, and I.E.E.E. Trans, Electron Devices 63, 3213 (2016).CrossRefGoogle Scholar
  35. 35.
    Y.C. Yeo, T.J. King, and C. Hu, J. Appl. Phys. 92, 7266 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringThiagarajar College of EngineeringMaduraiIndia
  2. 2.Department of Computer Science and EngineeringThiagarajar College of EngineeringMaduraiIndia

Personalised recommendations