Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6694–6699 | Cite as

Structural Transformation of LiNi0.8Co0.1Mn0.1O2 Cathode Material During Cycling with Overcharge Investigated by in situ X-ray Diffraction

  • K. A. PushnitsaEmail author
  • A. E. Kim
  • A. A. Popovich
  • Qingsheng Wang
  • P. A. Novikov
Article
  • 14 Downloads

Abstract

This article presents a study of cathode material LiNi0.8Co0.1Mn0.1O2 using continuous in situ x-ray diffractometry during cycling of a rechargeable cell in the range of 2.7 V to 4.8 V. Changes in the crystal structure LiNi0.8Co0.1Mn0.1O2 during charge–discharge were studied. Capacitance drop due to degradation, and dependence parameters of the material unit cell on the voltage are shown. The causes of irreversible structural degradation of the cathode material during intercalation and deintercalation of lithium ions were investigated. Results of our work can help to find a possible solution to decrease the degradation factors by understanding the degradation mechanism.

Keywords

Li-ion x-ray diffractometry in situ cathode material structural changes NCM811 LiNi0.8Co0.1Mn0.1O2 structure degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B. Dunn, H. Kamath, and J.-M. Tarascon, Science (2011). https://doi.org/10.1126/science.1212741.Google Scholar
  2. 2.
    D.B. Mahesh and O’.D. Colm, Phys. Chem. Chem. Phys. (2015). https://doi.org/10.1039/c4cp05552g.Google Scholar
  3. 3.
    N. Nitta, F. Wu, J.-T. Lee, and G. Yushin, Mater. Today (2015). https://doi.org/10.1016/j.mattod.2014.10.040.Google Scholar
  4. 4.
    A.A. Popovich, P.A. Novikov, A.O. Silin, N.G. Razumov, and W.Q. Sheng, Russ. J. Appl. Chem. (2014). https://doi.org/10.1134/s1070427214090134.Google Scholar
  5. 5.
    A.A. Popovich, M.Y. Maximov, A.O. Silin, P.A. Novikov, Y.M. Koshtyal, and A.M. Rumyantsev, Russ. J. Appl. Chem. (2016). https://doi.org/10.1134/s1070427216100074.Google Scholar
  6. 6.
    Q. Wang, A.A. Popovich, V.V. Zhdanov, P.A. Novikov, MYu Maximov, YuM Koshtyal, A.M. Rumyantsev, and A.O. Silin, Russ. J. Appl. Chem. (2016). https://doi.org/10.1134/s1070427218010081.Google Scholar
  7. 7.
    G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, Renew. Sust. Energy Rev. (2018). https://doi.org/10.1016/j.rser.2018.03.002.Google Scholar
  8. 8.
    Y.-K. Sun, S.-T. Myung, B.-C. Park, J. Prakash, I. Belharouak, and K. Amine, Nat. Mater. (2009). https://doi.org/10.1038/nmat2418.Google Scholar
  9. 9.
    S.-H. Kang, J. Kim, M.E. Stoll, D. Abraham, Y.-K. Sun, and K. Amine, J. Power Sources (2012). https://doi.org/10.1016/j.ssi.2005.01.003.Google Scholar
  10. 10.
    Y.-K. Sun, C. Ouyang, Z. Wang, X. Huang, and L. Chen, J. Electrochem. Soc. (2004). https://doi.org/10.1149/1.1647574.Google Scholar
  11. 11.
    D. Mohanty, S. Kalnaus, R.A. Meisner, K.J. Rhodes, J. Li, E.A. Payzant, D.L. Wood III, and D. Claus, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2012.11.144.Google Scholar
  12. 12.
    G. Hu, X. Qi, K. Hu, X. Lai, X. Zhang, K. Du, Z.D. Peng, and Y. Cao, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.01.176.Google Scholar
  13. 13.
    R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, and W. Jaegermann, Mater. Sci. Eng. (2015). https://doi.org/10.1016/j.mseb.2014.11.014.Google Scholar
  14. 14.
    S.-C. Yin, Y.-H. Rho, I. Swainson, and L.F. Nazar, Chem. Mater. (2006). https://doi.org/10.1021/cm0511769.Google Scholar
  15. 15.
    C. Liang, R. Longo, F. Kong, C. Zhang, Y. Nie, Y. Zheng, J. Kim, S. Jeon, S. Choi, and K. Cho, J. Power Sources (2017). https://doi.org/10.1016/j.jpowsour.2016.11.056.Google Scholar
  16. 16.
    H. Koga, L. Croguennec, M. Ménétrier, P. Mannessiez, F. Weill, and C. Delmas, J. Power Sources (2013). https://doi.org/10.1016/j.jpowsour.2013.02.075.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySaint-PetersburgRussia
  2. 2.Zhejiang Changxing CHN/RUS New Energy and Material Technology Research InstituteChangxing CountyChina
  3. 3.Saint-Petersburg State Technological Institute (Technical University)Saint-PetersburgRussia

Personalised recommendations