Journal of Electronic Materials

, Volume 48, Issue 10, pp 6631–6639 | Cite as

Nano-structural Characteristics and Optical and Electrical Properties of Obliquely Deposited Cuprous Azide Thin Films

  • Hadi SavaloniEmail author
  • Fahimeh Farid-Shayegan


Cuprous azide films were prepared using oblique angle deposition of Cu at 40° and post-annealed with the flow of nitrogen at three different temperatures. This deposition angle provides the highest void fraction according to the published literature on the basis of rearrangement of atoms resulting from the diffusion or thermal vibration and the available crystallographic sites and surface energy on the substrate/growing film surface for relaxation of an adatom. Structural characteristics of the films were obtained using atomic force microscopy and field emission scanning electron microscopy while their crystallography was investigated by x-ray diffraction analysis. Optical spectra of the samples were measured from which optical constants were deduced. The direct band gap energies were obtained and compared with the reported theoretical calculations and experimental results. The band gap energies obtained from the process of plotting (αhυ)2 versus are in agreement with the reported values in the literature. Band gap energies obtained from dT/dλ versus eV method are in agreement with experimental values and with the theoretical band gap energy of 4.1 eV as well as those obtained from (αhυ)2 versus method, while those obtained from dR/dλ versus eV are in good agreement with theoretical band gap energy of 3.86 eV.


Oblique angle deposition cuprous azide films band gap energy optical constants annealing process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was carried out with the support of the University of Tehran and Islamic Azad University.


  1. 1.
    W. Zhu and H. Xiao, Comput. Chem. 29, 176 (2008).CrossRefGoogle Scholar
  2. 2.
    B.L. Evans, A.D. Yoffe, and P. Gray, Chem. Rev. 59, 515 (1959).CrossRefGoogle Scholar
  3. 3.
    F.P. Bowden and A.D. Yoffe, Fast reactions in solids (Oxford: Butterworth’s Scientific Publications, 1958).Google Scholar
  4. 4.
    A. K. Galwey and M. E. Brown, Thermal Decomposition of Ionic Solids, vol 86, (1999), pp. 1–597Google Scholar
  5. 5.
    D.A. Yoffe, In Developments of Inorganic Nitrogen Chemistry, ed. by C.B.Colburn (Elsevier, New York, 1996), pp 92.Google Scholar
  6. 6.
    H. Xiao and Y. Li, Sci. China (Sci. Sin.) B5, 538 (1995).Google Scholar
  7. 7.
    W. Zhu, J. Xiao, and H. Xiao, Chem. Phys. Lett. 422, 117 (2006).CrossRefGoogle Scholar
  8. 8.
    P. Gray and T.C. Waddington, Proc. R. Soc. Lond. A235, 106 (1956).Google Scholar
  9. 9.
    W. Zhu, J. Xiao, and H. Xiao, Phys. Chem. B110, 9856 (2006).Google Scholar
  10. 10.
    F.P. Bowden and A.D. Yoffe, Initiation and Growth of Explosion in Liquids and Solids (CUP Archive, 1985).Google Scholar
  11. 11.
    S.K. Deb and A.D. Yoffe, Proc. R. Soc. Lond. A256, 528 (1960).Google Scholar
  12. 12.
    A. Lotfi-Kaljahi and H. Savaloni, Theor. Appl. Phys. 7, 2 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Siabi-Garjan, H. Savaloni, J. Beik-Mohammadi, and A.R. Grayeli-Korpi, Philos. Magn. 93, 3527 (2013).CrossRefGoogle Scholar
  14. 14.
    Y. Ueda, W. Takakura, and A. Yamada, Magn. Magn. Mater. 239, 45 (2002).CrossRefGoogle Scholar
  15. 15.
    W. Takakura, S. Ikeda, and Y. Ueda, Mater. Trans. 42, 881 (2001).CrossRefGoogle Scholar
  16. 16.
    M. Ravankhah and H. Savaloni, Optik. 132, 364 (2017).CrossRefGoogle Scholar
  17. 17.
    T.L. Barr, J. Vac. Sci. Technol. 14, 660 (1977).CrossRefGoogle Scholar
  18. 18.
    J. Iijima, J.W. Lim, S.H. Hong, S. Suzuki, K. Mimura, and M. Isshiki, Appl. Surf. Sci. 253, 2825 (2006).CrossRefGoogle Scholar
  19. 19.
    I. Platzman, R. Brener, H. Haick, and R. Tannenbaum, J. Phys. Chem. C 112, 1101 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Campion and P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998).CrossRefGoogle Scholar
  21. 21.
    J.I. Langford and A.J. Wilson, Appl. Cryst. 11, 102 (1978).CrossRefGoogle Scholar
  22. 22.
    T.C. Huang, G. Lim, F. Parmigiani, and E. Kay, Vac. Sci. Technol. A3, 2161 (1985).CrossRefGoogle Scholar
  23. 23.
    K. Khojier, H. Savaloni, and Z. Sadeghi, J. Theor. Appl. Phys. 8, 16 (2014).CrossRefGoogle Scholar
  24. 24.
    K. Khojier and H. Savaloni, Vacuum 84, 770 (2010).CrossRefGoogle Scholar
  25. 25.
    D.E. Aspnes, E. Kinsbron, and D.D. Bacon, Phys. Rev. B 21, 3290 (1980).CrossRefGoogle Scholar
  26. 26.
    H. Savaloni and N. Abbaszadeh, Electr. Mater. 45, 3343 (2016).CrossRefGoogle Scholar
  27. 27.
    I.S. Yahia, A.A.M. Farag, M. Cavas, and F. Yakuphanoglu, Superlattices Microstruct. 53, 63 (2013).CrossRefGoogle Scholar
  28. 28.
    A. Sinaoui, I. Trabelsi, F. Chaffar-Akkar, F. Aousgi, and M. Kanzari, Int. J. Thin Film Sci. Technol. 3, 19 (2014).CrossRefGoogle Scholar
  29. 29.
    S.K. Deb, Trans. Faraday Soc. 62, 3032 (1966).CrossRefGoogle Scholar
  30. 30.
    A.B. Gordienko and A.S. Poplavnoi, Izv. Vyssh and U. Zaved. Fiz. 10, 84 (2004).Google Scholar
  31. 31.
    R. Rosi and D.W. Lynch, Phys. Rev. B 5, 3883 (1972).CrossRefGoogle Scholar
  32. 32.
    H. Savaloni, F. Babaei, S. Song, and F. Placido, Appl. Surf. Sci. 255, 8041 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Physics, College of ScienceUniversity of TehranTehranIran
  2. 2.Plasma Physics Research Center, Faculty of Sciences, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations