Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6686–6693 | Cite as

The Magnetic, Electrical and Optical Properties of Rare Earth Er3+ Doped Lead Borate Glass

  • Mohammad Ahmad-Fouad BashaEmail author
  • Reham Morsi Mohamed Morsi
  • Morsi Mohamed Morsi
  • Ahmad Fouad Basha
Article
  • 21 Downloads

Abstract

Owing to the unique electronic structure of rare earth elements, we address in this paper the magnetic, electrical and optical properties of a prepared lead borate glass of composition (mol.%) 70PbO·30B2O3. The glass is doped with different ErCl3 contents. A vibrating-sample magnetometer was used to characterize the magnetic properties. Increasing the additive concentration led to an increase in the saturation magnetization without significant effects on the coercivity. Optical reflectance spectra of the doped glasses revealed the development of absorption bands as a result of Er3+ intra-configurational (ff) transitions. The calculated allowed direct energy gap was found to increase monotonically with increasing dopant concentration. The results of the ac conductivity showed a decrease in the activation energy values with increasing frequency and an increase in the ac conductivity values with increasing temperature, which mimics the semiconducting behavior. The incorporation of the rare earth ion (Er3+) facilitated the electronic conduction due to the increase of the non-bridging oxygen units. Increasing the dopant concentration led also to the participation of the ionic conductions. However, further increase of ErCl3 (above 1 mol.%) caused a decrease in the conductivity. Samples with dopant content up to 1 mol.% ErCl3 are accompanied by a high dielectric constant value of about 40. It can be concluded that samples doped with 1 mol.% ErCl3 or less can be used as energy storage material in electronic devices, whereas glass samples with higher dopant content can be used for magnetic applications.

Keywords

Lead borate glasses rare earth elements magnetic properties optical properties electrical properties A.C. conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    B. Locardi and E. Guadagnino, Mater. Chem. Phys. 31, 45 (1992).CrossRefGoogle Scholar
  2. 2.
    Y. Tu, S. Zhao, D. He, T. Wu, H. Zhang, R. Lei, L. Huang, and S. Xu, J. Mater. Chem. C 6, 7063 (2018).CrossRefGoogle Scholar
  3. 3.
    D.D. Ramteke, H.C. Swart, and R.S. Gedam, J. Rare Earths 35, 480 (2017).CrossRefGoogle Scholar
  4. 4.
    F.A. Abdel-Wahab and H.A. Maksoud, Am. J. Condens. Matter Phys. 2017, 41 (2017).Google Scholar
  5. 5.
    M. Farouk, A. Samir, F. Metawe, and M. Elokr, J. Non Cryst. Solids 371–372, 14 (2013).CrossRefGoogle Scholar
  6. 6.
    E.A. dos Santos, L.C. Courrol, L.R.P. Kassab, L. Gomes, N.U. Wetter, N.D. Vieira, S.J.L. Ribeiro, and Y. Messaddeq, J. Lumin. 124, 200 (2007).CrossRefGoogle Scholar
  7. 7.
    S. Shen, A. Jha, X. Liu, M. Naftaly, K. Bindra, H.J. Bookey, and A.K. Kar, J. Am. Ceram. Soc. 85, 1391 (2002).CrossRefGoogle Scholar
  8. 8.
    S. Tanabe, Photonics Based Wavel. Integr. Manip. 2, 101 (2005).Google Scholar
  9. 9.
    H. Lin, E.Y.-B. Pun, X. Wang, and X. Liu, J. Alloys Compd. 390, 197 (2005).CrossRefGoogle Scholar
  10. 10.
    I.-I. Oprea, H. Hesse, and K. Betzler, Opt. Mater. Amst. 28, 1136 (2006).CrossRefGoogle Scholar
  11. 11.
    P. Babu, H.J. Seo, K.H. Jang, K. Upendra Kumar, and C.K. Jayasankar, Chem. Phys. Lett. 445, 162 (2007).CrossRefGoogle Scholar
  12. 12.
    S. Xu, Z. Yang, S. Dai, G. Wang, L. Hu, and Z. Jiang, J. Non Cryst. Solids 347, 197 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Tanabe, J. Alloys Compd. 408–412, 675 (2006).CrossRefGoogle Scholar
  14. 14.
    K. Pradeesh, C.J. Oton, V.K. Agotiya, M. Raghavendra, and G.V. Prakash, Opt. Mater. Amst. 31, 155 (2008).CrossRefGoogle Scholar
  15. 15.
    K. Goud, C. Ramesh, and B.A. Rao, Mater. Sci. Res. India 14, 140 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Rajeshree Patwari and B. Eraiah, in IOP conference series: materials science and engineering 2018.Google Scholar
  17. 17.
    B.V. Padlyak, R. Lisiecki, and W. Ryba-Romanowski, Opt. Mater. Amst. 54, 126 (2016).CrossRefGoogle Scholar
  18. 18.
    C.R. Kesavulu, H.J. Kim, S.W. Lee, J. Kaewkhao, N. Wantana, S. Kothan, and S. Kaewjaeng, J. Alloys Compd. 683, 590 (2016).CrossRefGoogle Scholar
  19. 19.
    W.A. Pisarski, J. Pisarska, R. Lisiecki, Ł. Grobelny, G. Dominiak-Dzik, and W. Ryba-Romanowski, Chem. Phys. Lett. 472, 217 (2009).CrossRefGoogle Scholar
  20. 20.
    A.D. Sontakke, K. Biswas, A. Tarafder, R. Sen, and K. Annapurna, Opt. Mater. Express 1, 344 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Bhushana Reddy, S. Sailaja, C. Nageswara Raju, and B. Sudhakar Reddy, J. Opt. 43, 101 (2014).CrossRefGoogle Scholar
  22. 22.
    W.A. Pisarski, T. Goryczka, B. Wodecka-Duś, M. Płońska, and J. Pisarska, Mater. Sci. Eng. B 122, 94 (2005).CrossRefGoogle Scholar
  23. 23.
    T.A. Hanafy, J. Appl. Phys. 112, 034102 (2012).CrossRefGoogle Scholar
  24. 24.
    G.S. Said, F.H. Abd-El Kader, M.M. El Naggar, and B.A. Anees, Carbohydr. Polym. 65, 253 (2006).CrossRefGoogle Scholar
  25. 25.
    M.A.F. Basha and R.M.M. Morsi, J. Appl. Polym. Sci. 134, 45220 (2017).CrossRefGoogle Scholar
  26. 26.
    R.M.M. Morsi, S. Ibrahim, and M.M. Morsi, Ceram. Int. 43, 8306 (2017).CrossRefGoogle Scholar
  27. 27.
    M.M. El-Desoky, M.Y. Hassaan, and M.H. El-Kottamy, J. Mater. Sci. Mater. Electron. 9, 447 (1998).CrossRefGoogle Scholar
  28. 28.
    F.H. Abd El-kader, W.H. Osman, K.H. Mahmoud, and M.A.F. Basha, Phys. B Condens. Matter 403, 3473 (2008).CrossRefGoogle Scholar
  29. 29.
    J.C. Anderson, K.D. Leaver, R.D. Rawlings, and J.M. Alexander, Materials Science (Boston: Springer, 1990), pp. 518–549.CrossRefGoogle Scholar
  30. 30.
    R. Dalven, Introduction to Applied Solid State Physics (Boston: Springer, 1990), pp. 347–390.CrossRefGoogle Scholar
  31. 31.
    H.A. Othman, M.M. Eltabey, S.E. Ibrahim, L.M.S. El-Deen, and M.M. Elkholy, Phys. B Condens. Matter 506, 115 (2017).CrossRefGoogle Scholar
  32. 32.
    P. Hojati-Talemi, J. Azadmanjiri, and G.P. Simon, Mater. Lett. 64, 1684 (2010).CrossRefGoogle Scholar
  33. 33.
    T. Iwaki, Y. Kakihara, T. Toda, M. Abdullah, and K. Okuyama, J. Appl. Phys. 94, 6807 (2003).CrossRefGoogle Scholar
  34. 34.
    H. Gavrila and V. Ionita, J. Optoelectron. Adv. Mater. 5, 919 (2003).Google Scholar
  35. 35.
    R.M. Khattab, H.E.H. Sadek, and A.A. Gaber, Ceram. Int. 43, 234 (2017).CrossRefGoogle Scholar
  36. 36.
    F.H. ElBatal, M.A. Azooz, and A.A. El-Kheshen, Trans. Indian Ceram. Soc. 68, 81 (2009).CrossRefGoogle Scholar
  37. 37.
    S. Jana, B. Karmakar, and P. Kundu, Mater Sci Pol. 25, 1127 (2007).Google Scholar
  38. 38.
    M. Reddy, S. Raju, and N. Veeraiah, J. Phys. Chem. Solids 61, 1567 (2000).CrossRefGoogle Scholar
  39. 39.
    V. Prajzler, O. Lyutakov, I. Huttel, J. Oswald, and V. Jerabek, Advances in Lasers and Electro Optics (Rijeka: InTech, 2010).Google Scholar
  40. 40.
    M. Wachtler, A. Speghini, K. Gatterer, H.P. Fritzer, D. Ajò, and M. Bettinelli, J. Am. Ceram. Soc. 81, 2045 (1998).CrossRefGoogle Scholar
  41. 41.
    G.M. Gurgel, L.X. Lovisa, L.M. Pereira, F.V. Motta, M.S. Li, E. Longo, C.A. Paskocimas, and M.R.D. Bomio, J. Alloys Compd. 700, 130 (2017).CrossRefGoogle Scholar
  42. 42.
    H. Yuan, J. Zhang, R. Yu, and Q. Su, J. Rare Earths 27, 308 (2009).CrossRefGoogle Scholar
  43. 43.
    J.H. Nobbs, Rev. Prog. Color. Relat. Top. 15, 66 (2008).CrossRefGoogle Scholar
  44. 44.
    W.E. Vargas, J. Opt. A Pure Appl. Opt. 4, 314 (2002).CrossRefGoogle Scholar
  45. 45.
    S. Khan, G. Kaur, and K. Singh, Ceram. Int. 43, 722 (2017).CrossRefGoogle Scholar
  46. 46.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi 15, 627 (1966).CrossRefGoogle Scholar
  47. 47.
    J. Tauc, Mater. Res. Bull. 3, 37 (1968).CrossRefGoogle Scholar
  48. 48.
    S.B. Mallur, T. Czarnecki, A. Adhikari, and P.K. Babu, Mater. Res. Bull. 68, 27 (2015).CrossRefGoogle Scholar
  49. 49.
    G.B. Devidas, T. Sankarappa, M. Prashant Kumar, and S. Kumar, J. Mater. Sci. 43, 4856 (2008).CrossRefGoogle Scholar
  50. 50.
    M.M. El-Nahass, H. Kamal, M.H. Elshorbagy, and K. Abdel-Hady, Org. Electron. Phys. Mater. Appl. 14, 2847 (2013).Google Scholar
  51. 51.
    A. Tawansi, I.A. Gohar, D. Holland, and N.A. El-Shishtawi, J. Phys. D Appl. Phys. 21, 607 (1988).CrossRefGoogle Scholar
  52. 52.
    A.A. Ali and M.H. Shaaban, Bull. Mater. Sci. 34, 491 (2011).CrossRefGoogle Scholar
  53. 53.
    F. Albarede, Geochemistry: An Introduction (Cambridge: Cambridge University Press, 2009).CrossRefGoogle Scholar
  54. 54.
    R.M.M. Morsi, S.I. Abd El-Ghany, and M.M. Morsi, J. Mater. Sci. Mater. Electron. 26, 1419 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Physical Chemistry DepartmentNational Research CentreGizaEgypt
  3. 3.Glass Research DepartmentNational Research CentreGizaEgypt

Personalised recommendations