Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6647–6653 | Cite as

Development and Optical Properties of ZnO Nanoflowers on Porous Silicon for Photovoltaic Applications

  • Morteza Taherkhani
  • Nima NaderiEmail author
  • Parisa Fallahazad
  • Mohamad Javad Eshraghi
  • Alireza Kolahi
Article
  • 12 Downloads

Abstract

In the present work, a comparison between zinc oxide (ZnO) nanoflowers and nanorods for photovoltaic applications is presented. Using chemical bath deposition technique, ZnO nanoflowers were grown on porous silicon (PS) while ZnO nanorods were deposited on flat Si substrate. The morphology of ZnO/PS sample indicated the formation of nanoflowers by accumulation of ZnO nanorods on PS walls. The structural studies indicated that ZnO nanoflowers experienced a stress relief compared to ZnO nanorods which was due to the role of porous substrate for accommodating the lattice strain in order to obtain the subsequent ZnO nanoflowers with reduced strain. The optical results obtained from ZnO nanoflowers showed more intense photoluminescence and Raman peaks compared with nanorods. It was due to the higher specific surface area of nanoflowers which led to a higher absorption coefficient and increased the generation of electron–hole pairs in this sample. Due to their elevated specific surface area, ZnO nanoflowers can capture the incident light and reduce the reflection coefficient of silicon substrates. Thus, they can be considered as an effective antireflective layer to improve the efficiency of solar cells. The optoelectrical results showed an improvement in the efficiency of fabricated solar cells by use of ZnO nanoflowers on PS structures when compared to the conventional ones possessing ZnO nanorods on flat silicon substrates. Development of ZnO nanoflowers on PS substrates can further extend the applications of ZnO nanostructures in photovoltaic devices.

Keywords

Zinc oxide porous silicon solar cells nanoflowers chemical bath deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Materials and Energy Research Center, Karaj, Iran (Grant No. 99392008).

References

  1. 1.
    K. Saron, M. Hashim, N. Naderi, and N.K. Allam, Sol. Energy 98, 485 (2013).CrossRefGoogle Scholar
  2. 2.
    P.F. Azad, N. Naderi, M.J. Eshraghi, and A. Massoudi, J. Mater. Sci. Mater. El. 28, 15495 (2017).CrossRefGoogle Scholar
  3. 3.
    V. Ursaki, O. Lupan, I. Tiginyanu, G. Chai, and L. Chow, J. Nanoelectron. Optoelectron. 6, 473 (2011).CrossRefGoogle Scholar
  4. 4.
    Q. Zhao, M. Willander, R. Morjan, Q. Hu, and E. Campbell, Appl. Phys. Lett. 83, 165 (2003).CrossRefGoogle Scholar
  5. 5.
    S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, J. Cryst. Growth 225, 110 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Chu, S. Huang, D. Zhang, Z. Bian, X. Li, Z. Sun, and X. Yin, Appl. Phys. A 95, 849 (2009).CrossRefGoogle Scholar
  7. 7.
    T. Gao and T. Wang, Appl. Phys. A 80, 1451 (2005).CrossRefGoogle Scholar
  8. 8.
    Y. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. Norton, F. Ren, and P. Fleming, Appl. Phys. Lett. 81, 3046 (2002).CrossRefGoogle Scholar
  9. 9.
    J.-I. Hong, J. Bae, Z.L. Wang, and R.L. Snyder, J. Nanotechnol. 20, 085609 (2009).CrossRefGoogle Scholar
  10. 10.
    W.-T. Chiou, W.-Y. Wu, and J.-M. Ting, Diam. Relat. Mater. 12, 1841 (2003).CrossRefGoogle Scholar
  11. 11.
    C. Xu, X.W. Sun, Z.L. Dong, and M. Yu, Appl. Phys. Lett. 85, 3878 (2004).CrossRefGoogle Scholar
  12. 12.
    T. Hirate, S. Sasaki, W. Li, H. Miyashita, T. Kimpara, and T. Satoh, Thin Solid Films 487, 35 (2005).CrossRefGoogle Scholar
  13. 13.
    Z. Yang, Y.-Y. Shi, X.-L. Sun, H.-T. Cao, H.-M. Lu, and X.-D. Liu, Mater. Res. Bull. 45, 474 (2010).CrossRefGoogle Scholar
  14. 14.
    S.-H. Yi, S.-K. Choi, J.-M. Jang, J.-A. Kim, and W.-G. Jung, J. Colloid Interface Sci. 313, 705 (2007).CrossRefGoogle Scholar
  15. 15.
    N. Naderi and M.R. Hashim, Mater. Lett. 97, 90 (2013).CrossRefGoogle Scholar
  16. 16.
    J. Fan, T. Li, and H. Heng, Bull. Mater. Sci. 39, 19 (2016).CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, M.K. Ram, E.K. Stefanakos, and D.Y. Goswami, J. Nanomater. 2012, 624520 (2012).Google Scholar
  18. 18.
    C.-Y. Tsay, K.-S. Fan, S.-H. Chen, and C.-H. Tsai, J. Alloys. Compd. 495, 126 (2010).CrossRefGoogle Scholar
  19. 19.
    N. Naderi and M.R. Hashim, Appl. Surf. Sci. 258, 6436 (2012).CrossRefGoogle Scholar
  20. 20.
    A. Khan, J. Pak. Mater. Soc. 4, 5 (2010).Google Scholar
  21. 21.
    R. Shabannia, H.A. Hassan, H. Mahmodi, N. Naderi, and H. Abd, Semicond. Sci. Technol. 28, 115007 (2013).CrossRefGoogle Scholar
  22. 22.
    P. Fallahazad, N. Naderi, M.J. Eshraghi, and A. Massoudi, J. Mater. Sci. Mater. Electron. 29, 6289 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Materials and Energy Research CenterKarajIran

Personalised recommendations