Journal of Electronic Materials

, Volume 48, Issue 10, pp 6654–6660 | Cite as

Influence of Surface Passivation on Indium Arsenide Nanowire Band Gap Energies

  • Pedram Razavi
  • James C. GreerEmail author


The interplay between surface chemistry and quantum confinement on the band gap energies of indium arsenide (InAs) nanowires is investigated by first principle computations as the surface-to-volume ratio increases with decreasing cross section. Electronic band structures are presented as determined by both density functional and hybrid density functional theory (DFT) calculations; the latter are used to provide improved band gap energy estimates over those from standard approximate DFT methods. Different monovalent chemical species with varying electron affinity are used to eliminate surface states to enable direct comparison between surface chemistry and quantum confinement. The influence of these effects on energy band gaps and electron effective masses is highlighted. It is found that many desirable properties in terms of electronic properties and the elimination of surface states for nanoscale field effect transistors fabricated using [100]-oriented InAs can be achieved.


InAs GaAs nanowires electronic parameters density functional surface passivation quantum confinement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the European Union project DEEPEN funded under NMR-2013-1.4-1 Grant agreement number 604416. We also wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities. JG acknowledges funding from the Nottingham Ningbo New Materials Institute.

Supplementary material

11664_2019_7476_MOESM1_ESM.pdf (436 kb)
Supplementary material 1 (PDF 436 kb)


  1. 1.
    J.A. Del Alamo, Nature 479, 317 (2011).CrossRefGoogle Scholar
  2. 2.
    A.M. Ionescu and H. Riel, Nature 479, 329 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Nah, H. Fang, C. Wang, K. Takei, M.H. Lee, E. Plis, S. Krishna, and A. Javey, Nano Lett. 12, 3592 (2012).CrossRefGoogle Scholar
  4. 4.
    P.J. Pauzauskie and P. Yang, Mater. Today 9, 36–45 (2006).CrossRefGoogle Scholar
  5. 5.
    S.F. Karg, V. Troncale, U. Drechsler, P. Mensch, P.D. Kanungo, H. Schmid, V. Schmidt, L. Gignac, H. Riel, and B. Gotsmann, Nanotechnology 25, 305702 (2014).CrossRefGoogle Scholar
  6. 6.
    S.Y. Wu, C.Y. Lin, M.C. Chiang, J.J. Liaw, J.Y. Cheng, S.H. Yang, C.H. Tsai, P.N. Chen, T. Miyashita, C.H. Chang, V.S. Chang, K.H. Pan, J.H. Chen, Y.S. Mor, K.T. Lai, C.S. Liang, H.F. Chen, S.Y. Chang, C.J. Lin, C.H. Hsieh, R.F. Tsui, C.H. Yao, C.C. Chen, R. Chen, C.H. Lee, H.J. Lin, C.W. Chang, K.W. Chen, M.H. Tsai, K.S. Chen, Y. Ku and S.M. Jang, in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 2.6.1.Google Scholar
  7. 7.
    R. Xie, P. Montanini, K. Akarvardar, N. Tripathi, B. Haran, S. Johnson, T. Hook, B. Hamieh, D. Corliss, J. Wang, X. Miao, J. Sporre, J. Fronheiser, N. Loubet, M. Sung, S. Sieg, S. Mochizuki, C. Prindle, S. Seo, A. Greene, J. Shearer, A. Labonte, S. Fan, L. Liebmann, R. Chao, A. Arceo, K. Chung, K. Cheon, P. Adusumilli, H.P. Amanapu, Z. Bi, J. Cha, H.C. Chen, R. Conti, R. Galatage, O. Gluschenkov, V. Kamineni, K. Kim, C. Lee, F. Lie, Z. Liu, S. Mehta, E. Miller, H. Niimi, C. Niu, C. Park, D. Park, M. Raymond, B. Sahu, M. Sankarapandian, S. Siddiqui, R. Southwick, L. Sun, C. Surisetty, S. Tsai, S. Whang, P. Xu, Y. Xu, C. Yeh, P. Zeitzoff, J. Zhang, J. Li, J. Demarest, J. Arnold, D. Canaperi, D. Dunn, N. Felix, D. Gupta, H. Jagannathan, S. Kanakasabapathy, W. Kleemeier, C. Labelle, M. Mottura, P. Oldiges, S. Skordas, T. Standaert, T. Yamashita, M. Colburn, M. Na, V. Paruchuri, S. Lian, R. Divakaruni, T. Gow, S. Lee, A. Knorr, H. Bu and M. Khare, in 2016 IEEE International Electron Devices Meeting (IEDM) (2016), p. 2.7.1.Google Scholar
  8. 8.
    T. Huynh-Bao, S. Sakhare, J. Ryckaert, D. Yakimets, A. Mercha, D. Verkest, A.V.Y. Thean and P. Wambacq, in 2015 International Conference on IC Design and Technology (ICICDT) (2015), p. 1.Google Scholar
  9. 9.
    J.-P. Colinge and J.C. Greer, Nanowire Transistors: Physics of Devices and Materials in One Dimension (Cambridge: Cambridge University Press, 2016).CrossRefGoogle Scholar
  10. 10.
    D.D.D. Ma, C.S. Lee, F.C.K. Au, S.Y. Tong, and S.T. Lee, Science 299, 1874 (2003).CrossRefGoogle Scholar
  11. 11.
    K. Jung, P.K. Mohseni, and X. Li, Nanoscale 6, 15293 (2014).CrossRefGoogle Scholar
  12. 12.
    P. Razavi and J.C. Greer, Solid-State Electron. 149, 6–14 (2018).CrossRefGoogle Scholar
  13. 13.
    P.W. Leu, B. Shan, and K. Cho, Phys. Rev. B 73, 195320 (2006).CrossRefGoogle Scholar
  14. 14.
    M. Nolan, S. O’Callaghan, G. Fagas, J.C. Greer, and T. Frauenheim, Nano Lett. 7, 34 (2007).CrossRefGoogle Scholar
  15. 15.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  16. 16.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  18. 18.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  19. 19.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  20. 20.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  21. 21.
    J. Paier, M. Marsman, K. Hummer, G. Kresse, I.C. Gerber, and J.G. ÁngyÁn, J. Chem. Phys. 124, 154709 (2006).CrossRefGoogle Scholar
  22. 22.
    P. Razavi and J.C. Greer, Mater. Chem. Phys. 206, 35 (2018).CrossRefGoogle Scholar
  23. 23.
    L. Lin and J. Robertson, J. Vac. Sci. Technol. B: Nanotechnol. Microelectron. Mater. Process. Meas. Phenom 30, 04E101 (2012).CrossRefGoogle Scholar
  24. 24.
    M.H. Sun, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, and C.Z. Ning, Nano Lett. 12, 3378 (2012).CrossRefGoogle Scholar
  25. 25.
    L.E. Jensen, M.T. Björk, S. Jeppesen, A.I. Persson, B.J. Ohlsson, and L. Samuelson, Nano Lett. 4, 1961 (2004).CrossRefGoogle Scholar
  26. 26.
    J.W.W. Van Tilburg, R.E. Algra, W.G.G. Immink, and M. Verheijen, Semicond. Sci. Technol. 25, 024011 (2010).CrossRefGoogle Scholar
  27. 27.
    F. Ning, L.-M. Tang, Y. Zhang, and K.-Q. Chen, J. Appl. Phys. 114, 224304 (2013).CrossRefGoogle Scholar
  28. 28.
    H. Shu, D. Cao, P. Liang, S. Jin, X. Chen, and W. Lu, J. Phys. Chem. C 116, 17928–17933 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Galicka, M. Bukała, R. Buczko, and P. Kacman, J. Phys.: Condens. Matter 20, 454226 (2008).Google Scholar
  30. 30.
    H. Shu, X. Chen, H. Zhao, X. Zhou, and W. Lu, J. Phys. Chem. C 114, 17514–17518 (2010).CrossRefGoogle Scholar
  31. 31.
    H.J. Joyce, J. Wong-Leung, Q. Gao, H.H. Tan, and C. Jagadish, Nano Lett. 10, 908 (2010).CrossRefGoogle Scholar
  32. 32.
    S. Cahangirov and S. Ciraci, Phys. Rev. B 79, 165118-1 (2009).CrossRefGoogle Scholar
  33. 33.
    X. Huang, E. Lindgren, and J.R. Chelikowsky, Phys. Rev. B 71, 165328 (2005).CrossRefGoogle Scholar
  34. 34.
    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272–1276 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Tyndall National InstituteUniversity College CorkCorkIreland
  2. 2.University of Nottingham Ningbo New Materials Institute, Department of Electrical and Electronic EngineeringUniversity of Nottingham Ningbo ChinaNingboChina

Personalised recommendations