Journal of Electronic Materials

, Volume 48, Issue 10, pp 6710–6715 | Cite as

Enhanced Dielectric Performance of Polyaniline-Binary Transition Metal Composites

  • C. Anju
  • Shiny PalattyEmail author


Polyaniline-metal composite incorporating binary transition metals was synthesized by in situ rapid mixing polymerization. The current article investigates the dielectric performance of polyaniline composite synthesized using ferric nitrate oxidant by a dopant-free template-free method and also the role of Cu2+ as an external redox additive in enhancing the dielectric performance of a PANI composite. The experimental results proved that the coordination of PANI nitrogen with binary transition metals (Fe & Cu) not only improved the electrical conductivity, but also augmented the dielectric performance. Also, morphological analysis substantiates the role of external Cu2+ additive in modifying the PANI surface to act as an efficient dielectric material.


Conducting polymers dielectrics energy storage and conversion electrical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the director and principal, Rajagiri School of Engineering & Technology and Bharata Mata College for the support of this work. Analytical support from the Sophisticated Test and Instrumentation Centre, CUSAT, School of Pure & Applied Physics, Mahatma Gandhi University and Department of Physics, Maharajas College are also acknowledged.

Conflicts of interest

There are no conflicts to declare.


  1. 1.
    W. Xu, Y. Ding, Y. Yu, S. Jiang, L. Chen, and H. Hou, Mater. Lett. 192, 25–28 (2017). Scholar
  2. 2.
    X. Peng, Q. Wu, S. Jiang, M. Hanif, S. Chen, and H. Hou, Mater. Lett. 133, 240–242 (2014). Scholar
  3. 3.
    E.Bhardwaj E, S. Prasher S, M.Kumar, U. Kaur U, M. Sahni, J. Electron. Mater. (2016).
  4. 4.
    L. Ma, W.Y. Su, M.Y. Gan, X.F. Li, and L.Z. Luo, J. Polym. Res. 18, 595–599 (2011). Scholar
  5. 5.
    S. Cho, M. Kim, J.S. Lee, J. Jang, and A.C.S. Appl, Mater. Interfaces 7, 22301–22314 (2015). Scholar
  6. 6.
    D. Ghosh, S. Giri, A. Mandal, and C.K. Das, RSC Adv. 3, 11676 (2013). Scholar
  7. 7.
    L. Li, A.R.O. Raji, H. Fei, Y. Yang, E.L.G. Samuel, J.M. Tour, and A.C.S. Appl, Mater. Interfaces 5, 6622–6627 (2013). Scholar
  8. 8.
    S. Dhibar, P. Bhattacharya, G. Hatui, S. Sahoo and C. K. Das, Sustainable Chem. Eng. (2014).
  9. 9.
    F. Zeng, Z. Qin, B. Liang, T. Li, N. Liu, and M. Zhu, Prog. Nat. Sci. Mater. Int. 25, 512–519 (2015). Scholar
  10. 10.
    Y. Zhang, C. Dou, L. Li, and Y. Wang, Polym. Sci. Ser. A 56, 146–151 (2014). Scholar
  11. 11.
    J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, and S. Datar, RSC Adv. 6, 36588–36598 (2016). Scholar
  12. 12.
    M.D.A. Khan, A. Akhtar, and S.A. Nabi, New J. Chem. 39, 3728–3735 (2015). Scholar
  13. 13.
    M. Niranjana, L. Yesappa, S.P. Ashokkumar, H. Vijeth, S. Raghu, and H. Devendrappa, RSC Adv. 6, 115074–115084 (2016). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Basic Sciences and HumanitiesRajagiri School of Engineering & TechnologyErnakulamIndia
  2. 2.Department of ChemistryBharata Mata CollegeErnakulamIndia

Personalised recommendations