Chemical Interaction of InAs with Zinc

  • A. V. VishnyakovEmail author
  • V. A. Popov
  • A. V. Grebennik


The partial pressure of Zn over the system including three condensed phases [(In-Zn)-InAs(s)-Zn3As2(s)] has been determined between 617 K and 740 K by optical absorption of a vapor phase at 307.6 nm using a Zn hollow cathode lamp as a source of radiation. The array of experimental data contained 52 values of Zn pressure from 0.32 Pa up to 20 Pa at different temperatures. Using this information the activity of zinc and its mole fraction in metal phase (from 4.6 at.% to 8.3 at.%) were founded. The dependences of ln p and \( \ln K_{a}^{ \circ } \) against reciprocal temperature for reaction: 1/3Zn3As2(s) + 2/3In(liquid) = Zn(g) + 2/3InAs(s) were approximated by linear functions. For considered temperature range the standard enthalpy of reaction was calculated as equal to 126 ± 1 kJ/mol.


Interaction InAs zinc phase equilibrium pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to Cand. Sci. (Chem.) O. Mezhuev for his assistance in the technical design of the experimental setup.


  1. 1.
    A. Venter, P. Shamba, L. Botha, and J.R. Botha, Thin Solid Films 517, 4468 (2009).CrossRefGoogle Scholar
  2. 2.
    A.C. Ford, S. Chuang, J.C. Ho, Y.-L. Chueh, Z. Fan, and A. Javey, Nano Lett. 10, 509 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Chuang, Technical Report No.UCB/EECS-2012-8 University of California at Berkeley. Electrical Engineering and Computer Sciences (2012). Accessed 9 Jan 2012
  4. 4.
    A. Javey, A.C. Ford, and J.C. Ho, Surface and gas-phase doping of III-V semiconductors. US Patent#8697467B2, Apr 15 2014Google Scholar
  5. 5.
    M.B. Panish and H.C. Casey, T. Metall. Soc. AIME 242, 406 (1968).Google Scholar
  6. 6.
    Osuma Oda, Compound Semiconductor Bulk Materials and Characterizations. (2007), 556 p. Chapter 11: InAs.Google Scholar
  7. 7.
    W. Oelsen and P. Zuhlce, Arch. Eisenhuttenwes. 27, 743 (1956).Google Scholar
  8. 8.
    M. Gasemi and J. Johanson, J. Alloy. Compd. 638, 95 (2015).CrossRefGoogle Scholar
  9. 9.
    H.D. Koppel, Z.S. Medvedeva, and N.P. Luzhnaya, Inorg. Mater. 3, 300 (1967).Google Scholar
  10. 10.
    S.F. Marenkin, D.I. Pischikov, and V.B. Lasarev, Russ. J. Inorg. Chem. 33, 988 (1988).Google Scholar
  11. 11.
    S.F. Marenkin, Russ. J. Inorg. Chem. 38, 1890 (1993).Google Scholar
  12. 12.
    R. Ferro, G. Cacciamani, M. Giovannini, M.S.I. Eureka, and G. Effenberg (Ed.), (MSI, Materials Science International Services GmbH, Stuttgart, 1994), Document ID: 10.23203.1.0Google Scholar
  13. 13.
    A.V. Vishnyakov, A.V. Grebennik, O.M. Mezhuev, I.A. Mironov, and G.T. Petrovsky, J. Opt. Technol. 4, 111 (1994).Google Scholar
  14. 14.
    A.V. Grebennik, A.V. Vishnyakov, I.A. Mironov, G.G. Deviatych, E.M. Gavrischuk, and I.A. Korshunov, Russ. J. Phys. Chem. 69, 2219 (1995).Google Scholar
  15. 15.
    Y.-G. Sha, K.-T. Chen, R. Fang, and R.F. Brebrick, J. Electrochem. Soc. 136, 3837 (1989).CrossRefGoogle Scholar
  16. 16.
    R.F. Brebrick and A.J. Strauss, J. Chem. Phys. Solids 25, 1441 (1964).CrossRefGoogle Scholar
  17. 17.
    R. Hultgren, R.L. Orr, P.D. Anderson, and K.K. Kelly, Selected Values of the Thermodynamic Properties of Metals and Alloys. (Wiley, NY, 1973), pp. 926–929, 1043–1045Google Scholar
  18. 18.
    J. Barin and O. Knacke, Thermodynamical Properties of Inorganic Substances (Berlin: Springer Verlag, 1973), p. 921p.Google Scholar
  19. 19.
    NIST-JANAF Thermochemical Tables 4-th edn. (New York: American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, 1998)Google Scholar
  20. 20.
    A. Roine, Outotec’s HSC 8.0 Chemistry Software (2014)Google Scholar
  21. 21.
    V.P. Glushko (ed.), A Handbook: Thermal Constants of Substances. (Moscow: VINITI Ed., Section 1, 1972, Section 2, 1973) Part 6 (Zn, Cd, Hg, Cu)Google Scholar
  22. 22.
    O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, 5th ed. (Oxford: PergamonPress, 1979).Google Scholar
  23. 23.
    K. Yamaguchi, Y. Takeda, K. Kameda, and K. Itagaki, Mater. T. JIM 35, 596 (1994).CrossRefGoogle Scholar
  24. 24.
    S.M. Aria, M.P. Morozova, H. Tsitao, and E. Wolf, J. Gen. Chem. 27, 293 (1957).Google Scholar
  25. 25.
    M. Tmar, A. Gabriel, C. Chatillon, and I. Ansara, J. Cryst. Growth 69, 421 (1984).CrossRefGoogle Scholar
  26. 26.
    V.P. Vasiliev and J.-C. Gachon, Inorg. Mater. 42, 1176 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • A. V. Vishnyakov
    • 1
    Email author
  • V. A. Popov
    • 2
  • A. V. Grebennik
    • 1
  1. 1.Mendeleev University of Chemical TechnologyMoscowRussia
  2. 2.North-Eastern State UniversityMagadanRussia

Personalised recommendations