Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6661–6665 | Cite as

Microwave-Assisted Synthesis of Yttrium Iron Garnet Nano Powders for Low Temperature Sintering

  • Junliang LiuEmail author
  • Qimei Jin
  • Min Yang
  • Ping Yu
  • Maofang Ren
  • Yisheng Liu
  • Lijuan Nong
  • Zuocheng Kang
  • Junqing Lyu
  • Xiaoli Song
  • Ming Zhang
Article
  • 10 Downloads

Abstract

Yttrium iron garnet (YIG) nano powders have been successfully synthesized by a chemical co-precipitation plus microwave heating method. The particle sizes of the synthesized YIG powders ranged from 15 nm to 30 nm. Their heating behaviors indicated that small YIG nano crystallites in the synthesized powders started to melt and form liquid phase at a low temperature about 947°C. By using the synthesized powders as the starting materials, the dense YIG ceramics were sintered at the temperature of about 1050–1100°C, which was much lower than the sintering temperature for the powder derived from traditional solid reactions. The liquid phase from melting of small particles promoted the diffusion and re-crystallization, resulting in the low temperature sintering of YIG ceramics.

Keywords

Yttrium iron garnet microwave heating densification liquid phase sintering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the financial support from China Postdoctoral Science Foundation (No. 2016T90512), National Natural Science Foundation of China (No. 51678292), the Science Innovative Foundation of Yangzhou University, PR China (No. 2017CXJ016), Qing Lan Project of Yangzhou University (Dr. LJL) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province PR China (No. SJCX18_0795).

References

  1. 1.
    R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012).CrossRefGoogle Scholar
  2. 2.
    V.G. Harris, IEEE Trans. Mag. 48, 1075 (2012).CrossRefGoogle Scholar
  3. 3.
    D. Cruickshank, J. Eur. Ceram. Soc. 23, 2721 (2003).CrossRefGoogle Scholar
  4. 4.
    N. Jia, Z. Huaiwu, J. Li, Y. Liao, L. Jin, C. Liu, and V.G. Harris, J. Alloy. Compd. 695, 931 (2017).CrossRefGoogle Scholar
  5. 5.
    M.T. Sebastian, H. Wang, and H. Jantunen, Curr. Opin. State Mater. 20, 151 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Zhou, J. Adv. Ceram. 1, 89 (2012).CrossRefGoogle Scholar
  7. 7.
    R. Chen, J. Zhou, L. Zheng, H. Zheng, P. Zheng, Z. Ying, and J. Deng, J. Electron. Mater. 47, 2411 (2018).CrossRefGoogle Scholar
  8. 8.
    H. Li and Y. Guo, J. Electron. Mater. 47, 7251 (2018).CrossRefGoogle Scholar
  9. 9.
    V. Sharma and B.K. Kuanr, J. Alloy. Compd. 748, 591 (2018).CrossRefGoogle Scholar
  10. 10.
    Y.Y. Song, S.C. Yu, W.T. Kim, J.R. Park, and T.H. Kim, J. Magn. Magn. Mater. 177–181, 257 (1998).CrossRefGoogle Scholar
  11. 11.
    Q. Yang, H. Zhang, Y. Liu, Q. Wen, and L. Jia, Mater. Lett. 62, 2647 (2008).CrossRefGoogle Scholar
  12. 12.
    L. Fernandez-Garcia, M. Suarez, and J.L. Menendez, J. Alloy. Compd. 502, 132 (2010).CrossRefGoogle Scholar
  13. 13.
    Y.S. Cho, V.L. Burdick, and V.R.W. Amarakoon, J. Am. Ceram. Soc. 80, 1605 (1997).CrossRefGoogle Scholar
  14. 14.
    W. Zhang, C. Guo, R. Ji, C. Fang, and Y. Zeng, Mater. Chem. Phys. 125, 646 (2011).CrossRefGoogle Scholar
  15. 15.
    L. Fernandez-Garcia, M. Suarez, and J.L. Menendez, J. Alloy. Compd. 495, 196 (2010).CrossRefGoogle Scholar
  16. 16.
    S.H. Vajargah, H.R.M. Hosseini, and Z.A. Nemati, J. Alloy. Compd. 430, 339 (2007).CrossRefGoogle Scholar
  17. 17.
    P. Vaqueiro, M.A. Lpez-quintela, and J. Rivas, J. Mater. Chem. 7, 501 (1997).CrossRefGoogle Scholar
  18. 18.
    J. Liu, X. Chen, L. Yan, S. Wang, and M. Zhang, J. Electron. Mater. 44, 2276 (2015).CrossRefGoogle Scholar
  19. 19.
    J. Liu, P. Liu, X. Zhang, D. Pan, P. Zhang, and M. Zhang, Ultrason. Sonochem. 23, 46 (2015).CrossRefGoogle Scholar
  20. 20.
    J. Liu, P. Yu, Q. Jin, C. Zhang, M. Zhang, and V.G. Harris, Mater. Res. Lett. 6, 36 (2018).CrossRefGoogle Scholar
  21. 21.
    A.P. Gray, Analytical Calorimetry, ed. R.F. Porter and J.M. John (New York: Plenum, 1968), p. 209.CrossRefGoogle Scholar
  22. 22.
    J. Liu, J. Ye, X. Chen, X. Zhang, Z. Ma, M. Zhang, Y. Zeng, W. Zhang, and C. Guo, J. Cryst. Growth 363, 234 (2013).CrossRefGoogle Scholar
  23. 23.
    W.F.F.W. Ali, N.S. Abdullah, M. Kamarudin, M.F. Ain, and Z.A. Ahmad, Ceram. Int. 42, 13996 (2016).CrossRefGoogle Scholar
  24. 24.
    R. Nazlan, M. Hashim, I.R. Ibrahim, and I. Ismail, J. Supercond. Nov. Magn. 27, 631 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Junliang Liu
    • 1
    Email author
  • Qimei Jin
    • 1
  • Min Yang
    • 1
  • Ping Yu
    • 1
  • Maofang Ren
    • 1
  • Yisheng Liu
    • 1
  • Lijuan Nong
    • 1
  • Zuocheng Kang
    • 1
  • Junqing Lyu
    • 1
  • Xiaoli Song
    • 1
  • Ming Zhang
    • 1
  1. 1.Department of Materials Chemistry, School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations