Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6666–6674 | Cite as

Simultaneous Preparation of Polyaniline Nanofibers/Manganese Dioxide Composites at the Interface of Oil/Water for Supercapacitive Application

  • Shanxin XiongEmail author
  • Nana Yang
  • Xiangkai Zhang
  • Ru Wang
  • Yizhang Lu
  • Haifu Li
  • Jian Liu
  • Shuai Li
  • Zhu Qiu
  • Bohua Wu
  • Jia Chu
  • Xiaoqin Wang
  • Runlan Zhang
  • Ming Gong
  • Zhenming Chen
Article
  • 6 Downloads

Abstract

In this article, polyaniline nanofibers (PANI-NF)/manganese dioxide composites (PANI/MnO2) were synthesized through an interfacial polymerization approach. The PANI-NF and MnO2 were obtained by in situ oxidation of aniline by potassium permanganate and in situ reduction of potassium permanganate by aniline, respectively. During the interfacial polymerization, the monomer aniline can only be oxidized to PANI after it diffuses into the water phase. This diffusion-control feeding process of the monomer results in nanofiber structure. The morphologies and crystal structures of the prepared PANI/MnO2 composites were measured by scanning electron microscopy and x-ray diffraction. The supercapacitive behaviours of these composites were analysed by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. The CV and GCD tests indicate that the PANI/MnO2 composites possess better electrochemical activity and higher capacitive properties compared to neat PANI nanofibers. The specific capacitance of PANI/MnO2 composites and PANI-NF are 751 F g−1 and 180 F g−1 at 0.2 A g−1 in Na2SO4 solution, respectively. We believe that the enhanced capacitive properties are related to the special nanostructure and strong interaction between PANI and MnO2 that resulted from the interfacial synthesis method.

Keywords

Interfacial polymerization polyaniline polyaniline nanofibers/manganese dioxide composite supercapacitor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization (HZXYKF KT201804), Natural Science Foundation of Shaanxi Province, China (2018JM5027) and Peak Plan of Xi’an University of Science and Technology (2018GG-2-09).

References

  1. 1.
    Q. Meng, K.F. Cai, Y.X. Chen, and L.D. Chen, Nano Energy 36, 268 (2017).CrossRefGoogle Scholar
  2. 2.
    Z.Q. Huang, L. Li, Y.F. Wang, C. Zhang, and T.X. Liu, Compos. Commun. 8, 83 (2018).CrossRefGoogle Scholar
  3. 3.
    Q. Li, J.H. Liu, J.H. Zou, Y.Q. Chen, and L. Zhai, J. Power Sources 196, 565 (2011).CrossRefGoogle Scholar
  4. 4.
    R.R. Salunkhe, J.J. Lin, V. Malgras, S.X. Dou, J.H. Kim, and Y.K. Yamauchi, Nano Energy 59, 211 (2015).CrossRefGoogle Scholar
  5. 5.
    J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, and S. Furukawa, J. Am. Chem. Soc. 137, 1572 (2015).CrossRefGoogle Scholar
  6. 6.
    R.R. Salunkhe, J. Tang, Y. Kamachi, T. Nakato, J.H. Kim, and Y. Yamauchi, ACS Nano 9, 6288 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Wang, J. Liu, Y. Wang, C. Zhao, and W. Zheng, Mater. Res. Bull. 52, 89 (2014).CrossRefGoogle Scholar
  8. 8.
    Q.F. Meng, K.F. Ca, Y.X. Chen, and L.D. Chen, Nano Energy 36, 268 (2017).CrossRefGoogle Scholar
  9. 9.
    E. Muhammad, A. Graeme, and A. Snook, Encycl. Polym. Sci. Technol. (2018).  https://doi.org/10.1002/0471440264.pst666.Google Scholar
  10. 10.
    X.W. Sun, M.Y. Gan, L. Ma, H.H. Wang, T. Zhou, S.Y. Wang, W.Q. Dai, and H.N. Wang, Electrochim. Acta 180, 977 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Zhu and J. He, A.C.S. Appl. Mater. Interfaces 4, 1770 (2012).CrossRefGoogle Scholar
  12. 12.
    G.R. Li, Z.P. Feng, Y.N. Ou, D. Wu, R. Fu, and Y.X. Tong, Langmuir 26, 2209 (2010).CrossRefGoogle Scholar
  13. 13.
    M. Han and X. Wang, Am. Control Conf. (2014).  https://doi.org/10.1109/acc.2014.6858704.Google Scholar
  14. 14.
    L. Chen, L.J. Sun, F. Luan, Y. Liang, Y. Li, and X.X. Liu, J. Power Sources 195, 3742 (2010).CrossRefGoogle Scholar
  15. 15.
    L. Yu, M.Y. Gan, L. Ma, H. Huang, H.F. Hu, Y.J. Li, Y. Tu, C.Q. Ge, F.F. Yang, and J. Yan, Synth. Met. 198, 167 (2014).CrossRefGoogle Scholar
  16. 16.
    L. Li and G. Meng, J. Low Freq. Noise Vib. Act. Control 27, 135 (2008).CrossRefGoogle Scholar
  17. 17.
    J. Han, L.Y. Li, P. Fang, and R. Guo, J. Phys. Chem. C 116, 15900 (2012).CrossRefGoogle Scholar
  18. 18.
    I.I. Misnon and R.J. Jose, J. Name 00, 1–3 (2012).Google Scholar
  19. 19.
    F. Ran, Y.L. Yang, L. Zhao, X.Q. Niu, D.J. Zhang, L.B. Kong, Y.C. Luo, and L. Kang, J. Energy Chem. 24, 388 (2015).CrossRefGoogle Scholar
  20. 20.
    K. Ghosh, C.Y. Yue, M.M. Sk, and R.K. Jena, ACS Appl. Mater. Interfaces 9, 15350 (2017).CrossRefGoogle Scholar
  21. 21.
    Q. Lu, X.Y. Wang, M.F. Chen, B. Lu, M.H. Liu, T. Xing, and X.Y. Wang, ACS Sustain. Chem. Eng. (2018).  https://doi.org/10.1021/acssuschemeng.7b04492.Google Scholar
  22. 22.
    M.J.T. Raaijmakers and N.E. Benes, Prog. Polym. Sci. 63, 86 (2016).CrossRefGoogle Scholar
  23. 23.
    S.X. Xiong, Y.J. Shi, J. Chu, M. Gong, B.H. Wu, and X.Q. Wang, Electrochim. Acta 127, 139 (2014).CrossRefGoogle Scholar
  24. 24.
    K.J. Li, D.F. Guo, J.M. Chen, Y. Kong, and H.G. Xue, Synth. Met. 209, 555 (2015).CrossRefGoogle Scholar
  25. 25.
    J. Zhu, L.R. Kong, X.P. Shen, Q.R. Chen, Z.Y. Ji, J.H. Wang, K.Q. Xu, and G.X. Zhu, Appl. Surf. Sci. 428, 348 (2018).CrossRefGoogle Scholar
  26. 26.
    M.L. Li, L.X. Zhang, X.Q. Fan, M.Y. Wu, Y.Y. Du, M. Wang, Q.L. Kong, L.L. Zhang, and J.L. Shi, Appl. Catal. B 190, 36 (2016).CrossRefGoogle Scholar
  27. 27.
    J. Huang, S. Virji, B.H. Weiller, and R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003).CrossRefGoogle Scholar
  28. 28.
    G. Cabello and R.A. Davoglio, Appl. Catal. B 218, 192 (2017).CrossRefGoogle Scholar
  29. 29.
    Y. Li, X. Yan, X. Zheng, H. Si, M. Li, Y.C. Liu, Y.H. Sun, Y.R. Jiang, and Y. Zhang, J. Mater. Chem. 4, 17704 (2016).CrossRefGoogle Scholar
  30. 30.
    D. Liu, P.C. Du, W.L. Wei, H.X. Wang, Q. Wang, and P. Liu, J. Colloid Interface Sci. (2017).  https://doi.org/10.1016/j.jcis.Google Scholar
  31. 31.
    J. Wang, H.L. Xin, and D.L. Wang, Part. Part. Syst. Charact. 31, 515 (2014).CrossRefGoogle Scholar
  32. 32.
    Y.F. Tang, Y.Y. Liu, W.C. Guo, T. Chen, H.C. Wang, S.X. Yu, and F.M. Gao, J. Phys. Chem. C 118, 24866 (2014).CrossRefGoogle Scholar
  33. 33.
    M. Jin, G.Y. Han, Y.Z. Chang, H. Zhao, and H.Y. Zhang, Electrochim. Acta 56, 9838 (2011).CrossRefGoogle Scholar
  34. 34.
    J. Zhang, H.J. Feng, Q. Qin, G.F. Zhang, Y.X. Cui, Z.Z. Chai, and W.J. Zheng, J. Name. 00, 1 (2013).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Shanxin Xiong
    • 1
    • 2
    Email author
  • Nana Yang
    • 1
  • Xiangkai Zhang
    • 1
  • Ru Wang
    • 1
  • Yizhang Lu
    • 1
  • Haifu Li
    • 1
  • Jian Liu
    • 1
  • Shuai Li
    • 1
  • Zhu Qiu
    • 1
  • Bohua Wu
    • 1
  • Jia Chu
    • 1
  • Xiaoqin Wang
    • 1
  • Runlan Zhang
    • 1
  • Ming Gong
    • 1
  • Zhenming Chen
    • 3
  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anPeople’s Republic of China
  2. 2.Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Land and ResourcesXi’anPeople’s Republic of China
  3. 3.Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive UtilizationHezhou UniversityHezhouPeople’s Republic of China

Personalised recommendations