Journal of Electronic Materials

, Volume 48, Issue 10, pp 6735–6741 | Cite as

First-Principles Study of Strain Engineered Electronic Properties of GeSe-SnS Hetero-bilayer

  • Shahnewaz Ahmed
  • Towsif Taher
  • Rajat Chakraborty
  • Samia SubrinaEmail author


Vertical stacking of two dimensional (2D) materials is emerging as an exciting method for the design of next generation electronic and optoelectronic devices. Here, we employed first-principles calculations based on density functional theory to study the structural and electronic properties of the GeSe-SnS Van der Waals hetero-bilayer. Our results suggest that this hetero-bilayer is semiconducting in nature with a direct band gap of 0.9006 eV and also has an intrinsic type-II band alignment indicating an expectation for spontaneous electron-hole charge separation. The electronic responses of the hetero-bilayer are found to be sensitive and anisotropic to the applied strain. The direct band gap of the GeSe-SnS hetero-bilayer is tunable by strain within a considerable range (0.306–1.197 eV) and the transitions between direct–indirect band gap can repeatedly be obtained by applying compressive uniaxial and biaxial strains. The carrier effective masses of the hetero-bilayer can also be engineered by strain in a low mass range. These intriguing results suggest GeSe-SnS hetero-bilayer as a good candidate for applications in electronic and optoelectronic semiconductor devices.


Group IV monochalcogenides hetero-bilayer strain electronic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, Science 306(5696), 666 (2004).CrossRefGoogle Scholar
  2. 2.
    L. Wang, B. Wu, J. Chen, H. Liu, P. Hu and Y. Liu, Adv. Mater. 26(10), 1559 (2014).CrossRefGoogle Scholar
  3. 3.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman and M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012).CrossRefGoogle Scholar
  4. 4.
    H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. Ye, Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen and Y. Zhang, Nat. Nano 9, 372 (2014).Google Scholar
  5. 5.
    G.R. Bhimanapati, Z.M. Lin, V. Meunier, Y. Jung, J.J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones and J.A. Robinson ACS Nano 9(12), 11509 (2015)CrossRefGoogle Scholar
  6. 6.
    G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly and J. Van Den Brink, Phys. Rev. B 76(7), 073103 (2007).CrossRefGoogle Scholar
  7. 7.
    D. Pierucci, H. Henck, J.P.C. Ávila, A. Balan, C.H. Naylor, G. Patriarche, Y.J. Dappe, M.G. Silly, F. Sirotti, A.T.C. Johnson, M.C. Asensio and A. Ouerghi Nano Lett. 16(7), 4054 (2016).CrossRefGoogle Scholar
  8. 8.
    C. Xu, J. Yuan, D. Wang and Y. Mao, Mater. Res. Express 6(3), 036305 (2018).CrossRefGoogle Scholar
  9. 9.
    A. Rodin, L.C. Gomes, A. Carvalho and A.C. Neto, Phys. Rev. B 93(4), 045431 (2016).CrossRefGoogle Scholar
  10. 10.
    P.Z. Hanakata, A. Carvalho, D.K. Campbell and H.S. Park, Phys. Rev. B 94(3), 035304 (2016).CrossRefGoogle Scholar
  11. 11.
    R. Haleoot, C. Paillard, T.P. Kaloni, M. Mehboudi, B. Xu, L. Bellaiche and S. Barraza-Lopez, Phys. Rev. Lett. 118(22), 227401 (2017).CrossRefGoogle Scholar
  12. 12.
    T. Rangel, B.M. Fregoso, B.S. Mendoza, T. Morimoto, J.E. Moore and J.B. Neaton, Phys. Rev. Lett. 119(6), 067402 (2017).CrossRefGoogle Scholar
  13. 13.
    L.C. Gomes and A. Carvalho, Phys. Rev. B 92(8), 085406 (2015).CrossRefGoogle Scholar
  14. 14.
    I. Appelbaum and P. Li, Phys. Rev. B 94(15), 155124 (2016).CrossRefGoogle Scholar
  15. 15.
    R. Fei, W. Li, J. Li and L. Yang, Appl. Phys. Lett. 107(17), 173104 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Wu and X.C. Zeng, Nano Lett. 16(5), 3236 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Fei, W. Kang and L. Yang, Phys. Rev. Lett. 117(9), 097601 (2016).CrossRefGoogle Scholar
  18. 18.
    L.C. Gomes, P. Trevisanutto, A. Carvalho, A. Rodin and A.C. Neto, Phys. Rev. B 94(15), 155428 (2016).CrossRefGoogle Scholar
  19. 19.
    A. Shafique and Y.H. Shin, Sci. Rep. 7(1), 506 (2017).CrossRefGoogle Scholar
  20. 20.
    T. Taher, R. Chakraborty, S. Ahmed and S. Subrina, 10th International Conference on Electrical and Computer Engineering (ICECE) pp. 1–4 (2018)Google Scholar
  21. 21.
    J.R. Brent, D.J. Lewis, T. Lorenz, E.A. Lewis, N. Savjani, S.J. Haigh, G. Seifert, B. Derby and P. OBrien, J. Am. Chem. Soc. 137(39), 12689 (2015).CrossRefGoogle Scholar
  22. 22.
    Z. Tian, C. Guo, M. Zhao, R. Li and J. Xue, ACS Nano 11(2), 2219 (2017).CrossRefGoogle Scholar
  23. 23.
    Y. Ye, Q. Guo, X. Liu, C. Liu, J. Wang, Y. Liu and J. Qiu, Chem. Mater. (2017).Google Scholar
  24. 24.
    C. Xia, J. Du, W. Xiong, Y. Jia, Z. Wei and J. Li, J. Mater. Chem. A 5(26), 13400 (2017).CrossRefGoogle Scholar
  25. 25.
    B. Tong and L. Sham, Phys. Rev. 144(1), 1 (1966).CrossRefGoogle Scholar
  26. 26.
    P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, J. Phys. Condensed Mat. 21(39), 395502 (2009)Google Scholar
  27. 27.
    J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996).CrossRefGoogle Scholar
  28. 28.
    A.D. Becke, Phys. Rev. A 38(6), 3098 (1988).CrossRefGoogle Scholar
  29. 29.
    W.B. Zhang, C. Chen and P.Y. Tang, J. Chem. Phys. 141(4), 044708 (2014).CrossRefGoogle Scholar
  30. 30.
    W.B. Zhang, Q. Qu, P. Zhu and C.H. Lam, J. Mater. Chem. C 3(48), 12457 (2015).CrossRefGoogle Scholar
  31. 31.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13(12), 5188 (1976).CrossRefGoogle Scholar
  32. 32.
    Y. Cai, G. Zhang and Y.W. Zhang, J. Phys. Chem. C 119(24), 13929 (2015).CrossRefGoogle Scholar
  33. 33.
    W. Yu, Z. Zhu, S. Zhang, X. Cai, X. Wang, C.Y. Niu and W.B. Zhang, Appl. Phys. Lett. 109(10), 103104 (2016).CrossRefGoogle Scholar
  34. 34.
    X. Han, H. Stewart, S.A. Shevlin, C.R.A. Catlow and Z.X. Guo, Nano Lett. 14(8), 4607 (2014)CrossRefGoogle Scholar
  35. 35.
    L. Xu, M. Yang, S.J. Wang and Y.P. Feng, Phys. Rev. B 95(23), 235434 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. Hu, S. Zhang, S. Sun, M. Xie, B. Cai and H. Zeng, Appl. Phys. Lett. 107(12), 122107 (2015).CrossRefGoogle Scholar
  37. 37.
    X. Peng, Q. Wei and A. Copple, Phys. Rev. B 90(8), 085402 (2014).CrossRefGoogle Scholar
  38. 38.
    H. Shi, H. Pan, Y.W. Zhang and B.I. Yakobson, Phys. Rev. B 87(15), 155304 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations