Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6591–6597 | Cite as

Cu2O-Decorated TiO2 Nanotubes with Enhanced Optical Properties and Photocatalytic Performance

  • Yonghua Shi
  • Xishun JiangEmail author
  • Shaokang Zheng
  • Yongchun Zhang
  • Zhaoqi Sun
Article
  • 11 Downloads

Abstract

Cu2O-decorated TiO2 nanotube arrays (NTAs) are obtained using a two-step approach on Ti sheets. The applied voltage of Cu2O is − 0.2 V and − 0.3 V, respectively. The morphology and structure of these samples have been studied by field-emission scanning electron microscope (FESEM) and an x-ray diffractometer (XRD). FESEM analyses show that nanometre-sized Cu2O particles are attached to the TiO2 NTAs and the quantity of the Cu2O has greatly increased when the applied voltage tends to be more cathodic. The diffraction peaks for the anatase TiO2 and Cu2O are detected from XRD analysis. The bandgaps of TiO2 NTAs shift from 3.27 eV to 3.11 eV based on UV–Vis absorption spectra measurements. The photocatalytic performance of the Cu2O-TiO2 NTAs depends on the Cu2O deposition voltage.

Keywords

TiO2 nanotube arrays Cu2O particles photocatalytic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (51772003), Anhui Provincial Natural Science Foundation (1608085ME95), the State Key Laboratory of Metastable Materials Science and Technology, China (2018014), the Higher Education Excellent Youth Talents Foundation of Anhui Province (gxyqZD2016328), the Anhui University Provincial Natural Science Research Project China (KJ2017B04) and the Research Project of Chuzhou University (2017qd06). The authors would like to thank Zhongqing Lin of the Experimental Technology Center of Anhui University for electron microscope tests and discussion.

References

  1. 1.
    G. Longoni, R.L.P. Cabrera, S. Polizzi, M. D’Arienzo, C.M. Mari, Y. Cui, and R. Ruffo, Nano Lett. 17, 992 (2017).CrossRefGoogle Scholar
  2. 2.
    D.S. Dhawale, T.P. Gujar, and C.D. Lokhande, Anal. Chem. 89, 8531 (2017).CrossRefGoogle Scholar
  3. 3.
    T. Koketsu, J. Ma, B.J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortière, M. Salanne, F. Dardoize, O.J. Henri Groult, K.W. Borkiewicz, P. Chapman, and D.Dambournet Strasser, Nat. Mater. 16, 1142 (2017).CrossRefGoogle Scholar
  4. 4.
    J.J.M. Vequizo, H. Matsunaga, T. Ishiku, S. Kamimura, T. Ohno, and A. Yamakata, ACS Catal. 7, 2644 (2017).CrossRefGoogle Scholar
  5. 5.
    Q. Zhang, Y. Wei, H. Yang, D. Su, Y. Ma, H. Li, and T. Zhai, ACS Appl. Mater. Interfaces 9, 7009 (2017).CrossRefGoogle Scholar
  6. 6.
    P. Panagiotopoulou and X.E. Verykios, J. Phys. Chem. C 121, 5058 (2017).CrossRefGoogle Scholar
  7. 7.
    S.M. Kobosko, D.H. Jara, and P.V. Kamat, ACS Appl. Mater. Interfaces 9, 33379 (2017).CrossRefGoogle Scholar
  8. 8.
    E.E. Benson, E.M. Miller, S.U. Nanayakkara, D. Svedruzic, S. Ferrere, N.R. Neale, J. Lagemaat, and B.A. Gregg, Chem. Mater. 29, 2173 (2017).CrossRefGoogle Scholar
  9. 9.
    J. Yu, J. Low, W. Xiao, P. Zhou, and M. Jaroniec, J. Am. Chem. Soc. 136, 8839 (2014).CrossRefGoogle Scholar
  10. 10.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, and D.W. Bahnemann, Chem. Rev. 114, 9919 (2014).CrossRefGoogle Scholar
  11. 11.
    B. Qiu, M. Xing, and J. Zhang, J. Am. Chem. Soc. 136, 5852 (2014).CrossRefGoogle Scholar
  12. 12.
    W. Zhou, W. Li, J. Wang, Y. Qu, Y. Yang, Y. Xie, K. Zhang, L. Wang, H. Fu, and D. Zhao, J. Am. Chem. Soc. 136, 9280 (2014).CrossRefGoogle Scholar
  13. 13.
    X. Chen and A. Selloni, Chem. Rev. 114, 9281 (2014).CrossRefGoogle Scholar
  14. 14.
    C. Ludmila, U. Satoshi, S. Yoshitaka, N. Jotaro, K. Takaya, and S. Hiroshi, Chem. Lett. 44, 674 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Sang, Y. Zhao, and C. Burda, Chem. Rev. 114, 9283 (2014).CrossRefGoogle Scholar
  16. 16.
    Z. Ren, J. Wang, Z. Pan, K. Zhao, H. Zhang, Y. Li, Y. Zhao, I. Mora-Sero, J. Bisquert, and X. Zhong, Chem. Mater. 27, 8398 (2015).CrossRefGoogle Scholar
  17. 17.
    M. Kapilashrami, Y. Zhang, Y. Liu, A. Hagfeldt, and J. Guo, Chem. Rev. 114, 9662 (2014).CrossRefGoogle Scholar
  18. 18.
    V. Roiati, E. Mosconi, A. Listorti, S. Colella, G. Gigli, and F.D. Angelis, Nano Lett. 14, 2168 (2014).CrossRefGoogle Scholar
  19. 19.
    H. Zhang and J.F. Banfield, Chem. Rev. 114, 9613 (2014).CrossRefGoogle Scholar
  20. 20.
    J.R. Swierk, K.P. Regan, J. Jiang, G.W. Brudvig, and C.A. Schmuttenmaer, ACS Energy Lett. 1, 603 (2016).CrossRefGoogle Scholar
  21. 21.
    S. Khanchandani, S. Kumar, and A.K. Ganguli, ACS Sustain Chem. Eng. 4, 1487 (2016).CrossRefGoogle Scholar
  22. 22.
    B. Wu, D. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, and G.D. Stucky, J. Am. Chem. Soc. 138, 1114 (2016).CrossRefGoogle Scholar
  23. 23.
    M.M. Rahman, V.G. Alfonso, F. Fabregat-Santiago, J. Bisquert, A.M. Asiri, A.A. Alshehri, and H.A. Albar, Microchim. Acta 184, 2123 (2017).CrossRefGoogle Scholar
  24. 24.
    X. Liu, G. Dong, S. Li, G. Lu, and Y. Bi, J. Am. Chem. Soc. 138, 2917 (2016).CrossRefGoogle Scholar
  25. 25.
    C.P. Sajan, S. Wageh, A.A. Al-Ghamdi, J. Yu, and S. Cao, Nano Res. 9, 3 (2016).CrossRefGoogle Scholar
  26. 26.
    J. Luo, L. Steier, M. Son, M. Schreier, M.T. Mayer, and M. Grätzel, Nano Lett. 16, 1848 (2016).CrossRefGoogle Scholar
  27. 27.
    M. Schreier, J. Luo, P. Gao, T. Moehl, M.T. Mayer, and M. Grätzel, J. Am. Chem. Soc. 138, 1938 (2016).CrossRefGoogle Scholar
  28. 28.
    H. Wu, R. Sato, A. Yamaguchi, M. Kimura, M. Haruta, H. Kurata, and T. Teranishi, Science 351, 1306 (2016).CrossRefGoogle Scholar
  29. 29.
    D. Leuenberger, W. Zabka, O.R. Shah, S. Schnidrig, B. Probst, R. Alberto, and J. Osterwalder, Nano Lett. 17, 6620 (2017).CrossRefGoogle Scholar
  30. 30.
    C. Liu, Y. Chang, J. Chen, and S. Feng, ACS Appl. Mater. Interfaces 9, 39027 (2017).CrossRefGoogle Scholar
  31. 31.
    Y. Guo, H. Wang, X. Ma, J. Jin, W. Ji, X. Wang, W. Song, B. Zhao, and C. He, ACS Appl. Mater. Interfaces 9, 19074 (2017).CrossRefGoogle Scholar
  32. 32.
    Q. Wang, Y. Shang, L. Yu, C. Zou, W. Yao, D. Zhao, P. Song, H. Yang, and L. Guo, Nano Res. 9, 2581 (2016).CrossRefGoogle Scholar
  33. 33.
    H. Liu, H. Zheng, L. Li, H. Sheng, S. Jia, F. Cao, X. Liu, B. Chen, R. Xing, D. Zhao, and J. Wang, Nano Res. 10, 2344 (2017).CrossRefGoogle Scholar
  34. 34.
    S. Siol, J.C. Hellmann, S.D. Tilley, M. Graetzel, J. Morasch, J. Deuermeier, W. Jaegermann, and A. Klein, ACS Appl. Mater. Interfaces 8, 21824 (2016).CrossRefGoogle Scholar
  35. 35.
    G. Mamba, C. Pulgarin, J. Kiwi, M. Bensimon, and S. Rtimia, J. Catal. 353, 133 (2017).CrossRefGoogle Scholar
  36. 36.
    S.D. Pike, E.R. White, A. Regoutz, N. Sammy, D.J. Payne, C.K. Williams, and M.S.P. Shaffer, ACS Nano 11, 2714 (2017).CrossRefGoogle Scholar
  37. 37.
    P. Asen and S. Shahrokhian, J. Phys. Chem. C 121, 6508 (2017).CrossRefGoogle Scholar
  38. 38.
    A.P. LaGrow, M.R. Ward, D.C. Lloyd, P.L. Gai, and E.D. Boyes, J. Am. Chem. Soc. 139, 179 (2017).CrossRefGoogle Scholar
  39. 39.
    Z. Hu, X. Wang, H. Dong, S. Li, X. Li, and L. Li, J. Hazard. Mater. 340, 1 (2017).CrossRefGoogle Scholar
  40. 40.
    Y. Su, S. Yang, W. Liu, L. Qiao, J. Yan, Y. Liu, S. Zhang, and Y. Fang, Microchim. Acta 184, 4065 (2017).CrossRefGoogle Scholar
  41. 41.
    D. Sun, A.A. Aref, B. Wang, H. Wang, C. Qing, G. Qu, L. Xu, and Y. Tang, J. Alloys Compd. 688, 561 (2016).CrossRefGoogle Scholar
  42. 42.
    S. Chen, T. Cao, Y. Gao, D. Li, F. Xiong, and W. Huang, J. Phys. Chem. C 120, 21472 (2016).CrossRefGoogle Scholar
  43. 43.
    L. Yang, Z. Li, H. Jiang, W. Jiang, R. Su, S. Luo, and Y. Luo, Appl. Catal. B-Environ. 183, 75 (2016).CrossRefGoogle Scholar
  44. 44.
    Y. Chen, Y. Chang, and Y. Hsu, J. Alloys Compd. 729, 507 (2017).CrossRefGoogle Scholar
  45. 45.
    M. Nishikawa, M. Fukuda, Y. Nakabayashi, N. Saito, N. Ogawa, T. Nakajima, K. Shinoda, T. Tsuchiya, and Y. Nosaka, Appl. Surf. Sci. 363, 173 (2016).CrossRefGoogle Scholar
  46. 46.
    X. Jiang, Q. Lin, Y. Zhang, K. Dong, Y. Zhang, and Y. Shi, J. Mater. Sci. Mater. Electron. 28, 12509 (2017).CrossRefGoogle Scholar
  47. 47.
    X. Jiang, Z. Li, Q. Lin, K. Dong, Y. Zhang, and Z. Sun, J. Mater. Sci. Mater. Electron. 27, 8856 (2016).CrossRefGoogle Scholar
  48. 48.
    X. Jiang, M. Zhang, S. Shi, G. He, X. Song, and Z. Sun, J. Electrochem. Soc. 161, D640 (2014).CrossRefGoogle Scholar
  49. 49.
    M.M. Yildizhan, S. Sturm, and M.A. Gulgun, J. Mater. Sci. 51, 5912 (2016).CrossRefGoogle Scholar
  50. 50.
    A.C. Bronneberg, C. Höhn, and R. Krol, J. Phys. Chem. C 121, 5531 (2017).CrossRefGoogle Scholar
  51. 51.
    X. Liu, W. Wei, S. Cui, and J. Liu, Catal. Lett. 146, 1655 (2016).CrossRefGoogle Scholar
  52. 52.
    K. Dong, J. He, J. Liu, F. Li, L. Yu, Y. Zhang, X. Zhou, and H. Ma, J. Mater. Sci. 52, 6754 (2017).CrossRefGoogle Scholar
  53. 53.
    Y. Liao, P. Deng, X. Wang, D. Zhang, F. Li, Q. Yang, H. Zhang, and Z. Zhong, Nanoscale Res. Lett. 13, 221 (2018).CrossRefGoogle Scholar
  54. 54.
    X. Yang and C. Chen, RSC Adv. 6, 70978 (2016).CrossRefGoogle Scholar
  55. 55.
    S.K. Johnston, N. Cherkasov, E. Pérez-Barrado, A. Aho, D.Y. Murzin, A.O. Ibhadon, and M.G. Francesconi, Appl. Catal. A Gen. 544, 40 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Yonghua Shi
    • 1
  • Xishun Jiang
    • 1
    • 2
    Email author
  • Shaokang Zheng
    • 1
  • Yongchun Zhang
    • 1
  • Zhaoqi Sun
    • 1
  1. 1.School of Mechanical and Electrical EngineeringChuzhou UniversityChuzhouChina
  2. 2.State Key Laboratory of Metastable Materials Science and TechnologyYanshan UniversityQinhuangdaoChina

Personalised recommendations