Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6583–6590 | Cite as

Magnetic and Table-Like Magnetocaloric Properties of Polycrystalline Pr0.7Ba0.1Sr0.2MnO3

  • Y. Pham
  • T. V. Manh
  • T. D. Thanh
  • D.-S. Yang
  • S.-C. Yu
  • D.-H. KimEmail author
Article
  • 16 Downloads

Abstract

The magnetic and magnetocaloric properties of Pr0.7Ba0.1Sr0.2MnO3 polycrystalline are presented. The sample is single phase of a monoclinic structure with a = 5.4726 Å, b = 5.5045 Å, c = 7.7339 Å, α = γ = 90°, and β = 90.003°. X-ray absorption spectrum shows a co-existence of Mn4+ and Mn3+ ions in the compound. A ferromagnetic–paramagnetic (FM–PM) phase transition occurs at around 232 K. An analysis of the critical behavior near the FM–PM transition indicates a short-range magnetic ordering in Pr0.7Ba0.1Sr0.2MnO3 with critical exponents dependent on an applied magnetic field. The critical parameters are found to be β = 0.220 ± 0.03, 0.224 ± 0.002, and 0.227 ± 0.002, γ = 0.732 ± 0.011, 0.818 ± 0.003, and 0.958 ± 0.013, TC = 232.7, 234.6, and 236.6 K for field ranges of 1–3 T, 3–4 T and 4–5 T, respectively. The maximum entropy change (− ΔSmax) is found to be 5.67 J/kg K near the TC for a 5 T of field change. The table-like magnetocaloric effect observed in this sample is desirable for active magnetic refrigeration.

Keywords

Magnetic table-like magnetocaloric perovskite critical behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea through the Korea-Russia joint collaboration project (No. 2017K1A3A1A49070064) and Institute of Materials Science-Vietnam Academy of Science and Technology, Vietnam (Grant No. CSL1.04.19).

References

  1. 1.
    V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, and A. Conde, Prog. Mater. Sci. 93, 112 (2018).CrossRefGoogle Scholar
  2. 2.
    M.H. Phan and S.C. Yu, J. Magn. Magn. Mater. 308, 325 (2007).CrossRefGoogle Scholar
  3. 3.
    M.H. Phan, H.X. Peng, and S.C. Yu, J. Appl. Phys. 97, 10M306 (2005).CrossRefGoogle Scholar
  4. 4.
    N. Chau, H.N. Nhat, N.H. Luong, D.L. Minh, N.D. Tho, and N.N. Chau, Phys. B 327, 270 (2003).CrossRefGoogle Scholar
  5. 5.
    H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 915 (1995).Google Scholar
  6. 6.
    D. Samal and P.S. Anil Kumar, J. Phys. Condens. Matter. 23, 016001 (2011).CrossRefGoogle Scholar
  7. 7.
    R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, and R. Nirmala, J. Appl. Phys. 107, 09A943 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. Pham, T.D. Thanh, T.V. Manh, N.T. Dung, W.H. Shon, J.S. Rhyee, D.H. Kim, and S.C. Yu, AIP Adv. 8, 101417 (2018).CrossRefGoogle Scholar
  9. 9.
    T.D. Thanh, N.T. Dung, N.V. Dang, L.V. Bau, H.G. Piao, T.L. Phan, P.D.H. Yen, K.X. Hau, D.H. Kim, and S.C. Yu, AIP Adv. 8, 056419 (2018).CrossRefGoogle Scholar
  10. 10.
    T.A. Ho, N.T. Dang, T.L. Phan, D.S. Yang, B.W. Lee, and S.C. Yu, J. Alloys Compd. 676, 305 (2016).CrossRefGoogle Scholar
  11. 11.
    T.L. Phan, N.T. Dang, T.A. Ho, T.V. Manh, T.D. Thanh, C.U. Jung, B.W. Lee, A.T. Le, A.D. Phan, and S.C. Yu, J. Alloys Compd. 657, 818 (2016).CrossRefGoogle Scholar
  12. 12.
    T.D. Thanh, D.C. Linh, T.V. Manh, T.L. Phan, and S.C. Yu, IEEE Trans. Magn. 52, 2501004 (2016).CrossRefGoogle Scholar
  13. 13.
    H.B. Callen, Thermodynamics (New York: Wiley, 1981).Google Scholar
  14. 14.
    A. Arrott and J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967).CrossRefGoogle Scholar
  15. 15.
    M. Sikora, C. Kapusta, K. Knížek, Z. Jirák, C. Autret, M. Borowiec, C.J. Oates, V. Procházka, D. Rybicki, and D. Zajac, Phys. Rev. B 73, 094426 (2006).CrossRefGoogle Scholar
  16. 16.
    L. Hozoi, A.H. de Vries, and R. Broer, Phys. Rev. B 64, 165104 (2001).CrossRefGoogle Scholar
  17. 17.
    H.Y. Hwang, S.-W. Cheong, P.G. Radaelli, M. Marezio, and B. Batlogg, Phys. Rev. Lett. 75, 914 (1995).CrossRefGoogle Scholar
  18. 18.
    R.D. Shannon, Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
  19. 19.
    S.K. Banerjee, Phys. Lett. 12, 16 (1964).CrossRefGoogle Scholar
  20. 20.
    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics, 3rd ed., Vol. 5 (Oxford: Butterworth-Heinemann, 1980).Google Scholar
  21. 21.
    A. Smaili and R. Chahine, J. Appl. Phys. 81, 824 (1997).CrossRefGoogle Scholar
  22. 22.
    I.G. de Oliveira, P.J. von Ranke, and E.P. Nobrega, J. Magn. Magn. Mater. 261, 112 (2003).CrossRefGoogle Scholar
  23. 23.
    A. Chaturvedi, S. Stefanoski, M.H. Phan, G.S. Nolas, and H. Srikanth, Appl. Phys. Lett. 99, 162513 (2011).CrossRefGoogle Scholar
  24. 24.
    X.C. Zhong, X.Y. Shen, H.Y. Mo, D.L. Jiao, Z.W. Liu, W.Q. Qiu, H. Zhang, and R.V. Ramanujan, Mater. Today Commun. 14, 22 (2018).CrossRefGoogle Scholar
  25. 25.
    P. Álvarez, P. Gorria, J.L.S. Llamazares, and J.A. Blanco, J. Alloys Compd. 568, 98 (2013).CrossRefGoogle Scholar
  26. 26.
    H.Y. Mo, X.C. Zhong, D.L. Jiao, Z.W. Liu, H. Zhang, W.Q. Qiu, and R.V. Ramanujan, Phys. Lett. A 382, 1679 (2018).CrossRefGoogle Scholar
  27. 27.
    E.A. Balfour, Y.F. Shang, Q. Zheng, Y.T. Cao, H. Fu, A.A. ElGendy, and R.L. Hadimani, J. Magn. Magn. Mater. 467, 108 (2018).CrossRefGoogle Scholar
  28. 28.
    G.F. Wang, Z.R. Zhao, H.L. Li, and X.F. Zhang, Ceram. Int. 41, 7 (2015).Google Scholar
  29. 29.
    T.D. Thanh, D.C. Linh, P.D.H. Yen, L.V. Bau, V.H. Ky, Z. Wang, H.G. Piao, N.M. An, and S.C. Yu, Physica B: Condens. Matter. 532, 166 (2018).CrossRefGoogle Scholar
  30. 30.
    R.N. Mahato, K. Sethupathi, V. Sankaranarayanan, R. Nirmala, A.K. Nigam, and S.K. Malik, J. Appl. Phys. 109, 07E319 (2011).CrossRefGoogle Scholar
  31. 31.
    L.W. Li, O. Niehaus, M. Kersting, and R. Pöttgen, Appl. Phys. Lett. 104, 092416 (2014).CrossRefGoogle Scholar
  32. 32.
    V. Franco and A. Conde, Int. J. Refrig. 33, 465 (2010).CrossRefGoogle Scholar
  33. 33.
    V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, Annu. Rev. Mater. Res. 42, 305 (2012).CrossRefGoogle Scholar
  34. 34.
    H. Yamada and T. Goto, Phys. Rev. B 68, 184417 (2003).CrossRefGoogle Scholar
  35. 35.
    K.P. Belov, Magnetic Transitions, authorized translation from the Russian by W.H. Furry (Boston Technical, Cambridge, MA, 1965).Google Scholar
  36. 36.
    D. Kim, B. Revaz, B.L. Zink, F. Hellman, J.J. Rhyne, and J.F. Mitchell, Phys. Rev. Lett. 89, 227202 (2002).CrossRefGoogle Scholar
  37. 37.
    H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford: Oxford University Press, 1987).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Y. Pham
    • 1
  • T. V. Manh
    • 1
  • T. D. Thanh
    • 2
    • 3
  • D.-S. Yang
    • 4
  • S.-C. Yu
    • 1
  • D.-H. Kim
    • 1
    Email author
  1. 1.Department of Physics, College of Natural ScienceChungbuk National UniversityCheongjuSouth Korea
  2. 2.Institute of Materials ScienceVietnam Academy of Science and TechnologyHanoiVietnam
  3. 3.Graduate University of Science and TechnologyVietnam Academy of Science and TechnologyHanoiVietnam
  4. 4.Department of Physics, College of EducationChungbuk National UniversityCheongjuSouth Korea

Personalised recommendations