Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6607–6616 | Cite as

Influence of Structural Parameters on the Behavior of an Asymmetric Linearly Graded Workfunction Trapezoidal Gate SOI MOSFET

  • Sikha Mishra
  • Guru Prasad MishraEmail author
Article
  • 16 Downloads

Abstract

This paper presents a dual metal trapezoidal recessed channel metal oxide semiconductor field effect transistor (MOSFET) embedded with asymmetric stack gate with linearly graded metal work-function technique to improve the carrier transport efficiency and device switching performance. The analytical model for the proposed asymmetric-linearly graded trapezoidal gate (ASY–LGTG) silicon on insulator (SOI) MOSFET has been developed considering parabolic approximation of 2-D Poisson’s equation. The threshold voltage of the device is extracted using minimum surface potential. The simulation work has been carried out using a Silvaco TCAD tool to validate the results of the analytical model. This grooved structure exhibits the corner effect, which plays a dynamic role in the improvement of the device performance. However, the impact of the corner effect can be controlled by the groove corner angle and doping concentration. We have also investigated the impact of different structural parameters such as negative junction depth (NJD), corner angle, substrate doping and stack gate features (upper oxide permittivity and oxide thickness ratio) on the performance of minimum surface potential, sub-threshold slope (SS), drain induced barrier lowering (DIBL), threshold voltage and device switching characteristics.

Keywords

Corner effect recessed channel asymmetric stack gate negative junction depth LGTG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Semiconductor Industry Association, International Technology Roadmap for Semiconductors (San Jose: SIA, 2011).Google Scholar
  2. 2.
    K. Suzuki and S. Pidin, IEEE Trans. Electron Devices 50, 1297 (2003).CrossRefGoogle Scholar
  3. 3.
    D.J. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.P. Wong, IEEE Conference Proceedings (2001), pp. 259–288.Google Scholar
  4. 4.
    G.P. Katti, N. Das Gupta, and A. Das Gupta, IEEE Trans. Electron Devices 51, 1169 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Chaudhry and M.J. Kumar, IEEE Trans. Device Mater. Reliab 4, 99 (2004).CrossRefGoogle Scholar
  6. 6.
    S. Kimura, J. Tanaka, H. Noda, T. Toyabe, and S. Ihara, IEEE Trans. Electron Devices 42, 94 (1995).CrossRefGoogle Scholar
  7. 7.
    S. Sreelal, C.K. Lau, and G.S. Samudra, Semicond. Sci. Technol. 17, 179 (2002).CrossRefGoogle Scholar
  8. 8.
    J.Y. Seo, K.J. Lee, Y.S. Kim, S.Y. Lee, S.J. Hwang, and C.K. Yoon, Microelectron. Reliab. 45, 1317 (2005).CrossRefGoogle Scholar
  9. 9.
    S. Mishra, A.S. Lenka, S.S. Mohanty, U. Bhanja, and G.P. Mishra, IEEE Conference Proceedings (2017), pp. 536.Google Scholar
  10. 10.
    M.J. Kumar and A. Chaudhry, IEEE Trans. Electron Devices 51, 569 (2004).CrossRefGoogle Scholar
  11. 11.
    Y.T. Hou, M.F. Li, T. Low, and D.L. Kwong, IEEE Trans. Electron Devices 51, 1783 (2004).CrossRefGoogle Scholar
  12. 12.
    T.K. Chiang, Microelectron. Reliab. 49, 113 (2009).CrossRefGoogle Scholar
  13. 13.
    R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R.S. Gupta, IEEE Trans. Electron Devices 55, 2602 (2008).CrossRefGoogle Scholar
  14. 14.
    R. Chaujar, R. Kaur, M. Saxena, M. Gupta, and R.S. Gupta, Semicond. Sci. Technol. 24, 065005 (2009).CrossRefGoogle Scholar
  15. 15.
    P. Malik, R.S. Gupta, R. Chaujar, and M. Gupta, Microelectron. Reliab. 52, 151 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Singh, S. Mishra, S.S. Mohanty, and G.P. Mishra, Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 015010 (2016).CrossRefGoogle Scholar
  17. 17.
    B.Y. Tsui and C.F. Huang, IEEE Electron Device Lett. 24, 153 (2003).CrossRefGoogle Scholar
  18. 18.
    T.L. Li, C.H. Hu, W.L. Ho, H.C.H. Wang, and C.Y. Chang, IEEE Trans. Electron Devices 52, 1172 (2005).CrossRefGoogle Scholar
  19. 19.
    T. Nabatame, Y. Nunoshige, M. Kadoshima, H. Takaba, K. Segawa, S. Kimura, H. Satake, H. Ota, T. Ohishi, and A. Toriumi, Microelectron. Eng. 85, 1524 (2008).CrossRefGoogle Scholar
  20. 20.
    S. Deb, N.B. Singh, N. Islam, and S.K. Sarkar, IEEE Trans. Nanotechnol. 11, 472 (2012).CrossRefGoogle Scholar
  21. 21.
    A.S. Lenka, S. Mishra, S. Mishra, U. Bhanja, and G.P. Mishra, Superlattices Microstruct. 111, 878 (2017).CrossRefGoogle Scholar
  22. 22.
    S. Mishra, U. Bhanja, and G.P. Mishra, Int. J. Numer. Model. 32, e2487 (2018).CrossRefGoogle Scholar
  23. 23.
    B. Cheng, M. Cao, R. Rao, A. Inani, P.V. Voorde, and W.M. Greene, IEEE Trans. Electron Devices 46, 1537 (1999).CrossRefGoogle Scholar
  24. 24.
    M. Saxena, S. Haldar, M. Gupta, and R.S. Gupta, Solid State Electron. 47, 2131 (2003).CrossRefGoogle Scholar
  25. 25.
    T.K. Chiang, Microelectron. Reliab. 49, 113 (2009).CrossRefGoogle Scholar
  26. 26.
    S. Mishra, U. Bhanja, and G.P. Mishra, Int. J. Nanopart. 11, 140 (2019).CrossRefGoogle Scholar
  27. 27.
    Silvaco International, ATLAS Device Simulation Software (Santa Clara, CA: Silvaco Int, 2014).Google Scholar
  28. 28.
    E. Takeda, H. Kume, and S. Asai, IEEE Trans. Electron Devices 30, 448 (1983).CrossRefGoogle Scholar
  29. 29.
    S. Kimura, J. Tanaka, H. Noda, T. Toyabe, and S. Ihara, IEEE Trans. Electron Devices 42, 94 (1995).CrossRefGoogle Scholar
  30. 30.
    M. Xiao-Hua, H. Yue, S. Bao-Gang, G. Hai-Xia, R. Hong-Xia, Z. Jin-Cheng, Z. Jin-Feng, Z. Xiao-Ju, and Z. Wei-Dong, Chin. Phys. Soc. 15, 195 (2006).CrossRefGoogle Scholar
  31. 31.
    I. Polishchuk, P. Ranade, T.J. King, and C. Hu, IEEE Electron Device Lett. 22, 444 (2001).CrossRefGoogle Scholar
  32. 32.
    S. Luan, H.X. Liu, and R.X. Jia, Sci. China Ser. E Technol. Sci. 52, 2400 (2009).CrossRefGoogle Scholar
  33. 33.
    W.P. Bai, S.H. Bae, H.C. Wen, S. Mathew, L.K. Bera, N. Balasubramanium, N. Yamada, M.F. Li, and D.L. Kwong, IEEE Electron Device Lett. 26, 231 (2005).CrossRefGoogle Scholar
  34. 34.
    A. Pan, R. Liu, M. Sun, and C.Z. Ning, ACS Nano 4, 671 (2010).CrossRefGoogle Scholar
  35. 35.
    J. Liu, H.C. Wen, J.P. Lu, and D.L. Kwong, IEEE Electron Device Lett. 26, 228 (2005).CrossRefGoogle Scholar
  36. 36.
    Z. Zhang, S.C. Song, C. Huffman, M.M. Hussain, J. Barnett, N. Moumen, H.N. Alshareef, P. Majhi, J.H. Sim, S.H. Bae, and B.H. Lee, Electrochem. Solid State Lett. 8, 271 (2005).CrossRefGoogle Scholar
  37. 37.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Device, 3rd ed. (New York: Wiley, 2007), pp. 314.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication Engineering, Institute of Technical Education and ResearchSiksha ‘O’ Anusandhan Deemed to be UniversityKhandagiri, BhubaneswarIndia
  2. 2.Department of Electronics and Telecommunication EngineeringNational Institute of Technology RaipurChhattisgarhIndia

Personalised recommendations