Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6640–6646 | Cite as

Impact of Sputtering Power on Properties of CdO:ZnO Thin Films Synthesized by Composite Method for Oxygen Gas Sensing Application

  • Jeevitesh K. Rajput
  • Trilok K. Pathak
  • L. P. PurohitEmail author
Article
  • 13 Downloads

Abstract

The present work reports the impact of RF sputtering power on CdO:ZnO (3:1) nanocomposite thin films deposited by sputtering. The structural, morphological, optical and electrical properties of CdO:ZnO thin films deposited at 40 W, 60 W, 80 W and 100 W RF sputtering power were investigated. The structural and morphological results show that high sputtering power improves the crystallinity of thin films. The thin film deposited at 80 W has (111) and (002) phases corresponding to mixed cubic and wurtzite crystal structure, whereas surface morphology of 100 W thin film shows that particles are densely agglomerate. The energy-dispersive x-ray spectrum shows the presence of Cd and Zn atoms in the CdO:ZnO nanocomposite samples. The films show 75–85% transparency in the visible region and a large variation in optical bandgaps from 2.6 eV to 3.5 eV was observed for the samples deposited at 40–100 W with lowest value for the 80 W thin film. I–V characteristics of all the CdO:ZnO thin films show an ohmic nature and resistance varies from 104 Ω to 109 Ω, suitable for resistive based gas sensor. The optimized thin film of CdO:ZnO deposited at 80 W was used for oxygen gas sensing applications 25–200°C operating temperatures and 25.4% sensor response was observed. The response and recovery times were found 10–20 s. Overall study reflects appreciable impact of RF sputtering power on different parameters under investigation.

Keywords

RF sputtering CdO ZnO oxygen sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    C. Ray and T. Pal, J. Mater. Chem. A 5, 9465 (2017).CrossRefGoogle Scholar
  2. 2.
    Y. Li, F. Xu, Z. Lin, X. Sun, Q. Peng, Y. Yuan, S. Wang, Z. Yang, X. He, and Y. Li, Nanoscale 9, 14476 (2017).CrossRefGoogle Scholar
  3. 3.
    S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, N.D. Golubeva, and P. Srivastava, RSC Adv. 8, 20534 (2018).CrossRefGoogle Scholar
  4. 4.
    J.K. Rajput and L.P. Purohit, Nanosci. Technol. 3, 1 (2016). https://doi.org/10.15226/2374-8141/3/2/00140.CrossRefGoogle Scholar
  5. 5.
    H.B. Hassan and R.H. Tammam, Solid State Ion 320, 325 (2018).CrossRefGoogle Scholar
  6. 6.
    B. Gerdes, M. Jehle, N. Lass, L. Riegger, A. Spribille, M. Linse, F. Clement, R. Zengerle, and P. Koltay, Sol. Energy Mater. Sol. Cells 180, 83 (2018). https://doi.org/10.1016/j.solmat.2018.02.022.CrossRefGoogle Scholar
  7. 7.
    S. Sikarwar, S. Singh, R. Srivastava, B.C. Yadav, and V.V. Tyagi, Smart Mater. Struct. 26, 105047 (2017).CrossRefGoogle Scholar
  8. 8.
    V.S. Rana, J.K. Rajput, T.K. Pathak, and L.P. Purohit, J. Alloys Compd. 764, 724 (2018).CrossRefGoogle Scholar
  9. 9.
    D. Haridas and V. Gupta, Sens. Actuators B Chem. 182, 741 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Sikarwar, B.C. Yadav, S. Singh, G.I. Dzhardimalieva, S.I. Pomogailo, N.D. Golubeva, and A.D. Pomogailo, Sens. Actuators B Chem. 232, 283 (2016).CrossRefGoogle Scholar
  11. 11.
    B. Bhowmik, P. Bhattacharyya, and I.E.E.E. Trans, Nanotechnology 16, 180 (2017).Google Scholar
  12. 12.
    J.K. Rajput, T.K. Pathak, V. Kumar, M. Kumar, and L.P. Purohit, Surf. Interfaces 6, 11 (2017).CrossRefGoogle Scholar
  13. 13.
    D. Gedamu, I. Paulowicz, S. Kaps, O. Lupan, S. Wille, G. Haidarschin, Y.K. Mishra, and R. Adelung, Adv. Mater. 26, 1541 (2014).CrossRefGoogle Scholar
  14. 14.
    Y.K. Mishra and R. Adelung, Mater. Today 21, 631 (2018).CrossRefGoogle Scholar
  15. 15.
    J.K. Rajput, T.K. Pathak, V. Kumar, H.C. Swart, and L.P. Purohit, Phys. B 535, 314 (2018).CrossRefGoogle Scholar
  16. 16.
    F.C. Eze, Mater. Chem. Phys. 89, 205 (2005).CrossRefGoogle Scholar
  17. 17.
    T.K. Pathak, J.K. Rajput, V. Kumar, L.P. Purohit, H.C. Swart, and R.E. Kroon, J. Colloid Interface Sci. 487, 378 (2017).CrossRefGoogle Scholar
  18. 18.
    C.V. Reddy and B.B.J. Shim, J. Phys. Chem. Solids 112, 20 (2018).CrossRefGoogle Scholar
  19. 19.
    A. Sharma, M. Tomar, and V. Gupta, Sens. Actuators B Chem. 156, 743 (2011).CrossRefGoogle Scholar
  20. 20.
    P.S. Shewale, G.L. Agawane, S.W. Shin, A.V. Moholkar, J.Y. Lee, J.H. Kim, and M.D. Uplane, Sens. Actuators B Chem. 177, 695 (2013).CrossRefGoogle Scholar
  21. 21.
    P.H. Rai, Y.S. Kim, H.M. Song, M.K. Song, and Y.T. Yu, Sens. Actuators B Chem. 165, 133 (2012).CrossRefGoogle Scholar
  22. 22.
    V.V. Ganbavle, S.K. Patil, S.I. Inamdar, S.S. Shinde, and K.Y. Rajpure, Sens. Actuators A Phys. 216, 328 (2014).CrossRefGoogle Scholar
  23. 23.
    C.S. Park, D.B. Mahadik, and H.H. Park, RSC Adv. 5, 66384 (2015).CrossRefGoogle Scholar
  24. 24.
    A.G. Imer, Superlattices Microstruct. 92, 278 (2016).CrossRefGoogle Scholar
  25. 25.
    L. Yua, J. Wei, Y. Luo, Y. Tao, M. Lei, X. Fana, W. Yana, and P. Peng, Sens. Actuators B Chem. 204, 96 (2014).CrossRefGoogle Scholar
  26. 26.
    Ö. Coban and S. Tekmen, Sens. Actuators B Chem. 186, 781 (2013).CrossRefGoogle Scholar
  27. 27.
    L. Peng, Q. Zeng, H. Song, P. Qin, M. Lei, B. Tie, and T. Wang, Appl. Phys. A Mater. Sci. Process. 105, 392 (2011).Google Scholar
  28. 28.
    Y. Liu, T. Hang, Y. Xie, Z. Bao, J. Song, H. Zhang, and E. Xie, Sens. Actuators B Chem. 160, 266 (2011).CrossRefGoogle Scholar
  29. 29.
    N. Al-Hardan, M.J. Abdullah, and A.A. Aziz, Appl. Surf. Sci. 257, 8993 (2011).CrossRefGoogle Scholar
  30. 30.
    A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, Q. Chai, and X. Zhou, Sens. Actuators B Chem. 158, 9 (2011).CrossRefGoogle Scholar
  31. 31.
    Q. Zhou, Z. Ji, B. Hu, C. Chen, L. Zhao, and C. Wang, Mater. Lett. 61, 531 (2007).CrossRefGoogle Scholar
  32. 32.
    T.K. Subramanyam, B.S. Naidu, and S. Uthanna, Appl. Surf. Sci. 169, 529 (2001).CrossRefGoogle Scholar
  33. 33.
    C. Harish, K.S. Barshilia, and J. Rajam, Nanosci. Nanotechnol. Lett. 3, 300 (2011).CrossRefGoogle Scholar
  34. 34.
    P. Dhivya, A.K. Prasad, and M. Sridharan, J. Alloys Compd. 620, 109 (2015).CrossRefGoogle Scholar
  35. 35.
    Joint Committee Powder Diffraction Spectrum card no. 05-0640.Google Scholar
  36. 36.
    Joint Committee Powder Diffraction Spectrum card no. 14-3651.Google Scholar
  37. 37.
    P. Hsieh, T. Li, C. Chung, H. Peng, and J. Lin, Adv. Mater. Res. 579, 118 (2012).CrossRefGoogle Scholar
  38. 38.
    K. Ahn, J. Park, B. Shin, W. Lee, G.Y. Yeom, and J. Myoung, Appl. Surf. Sci. 271, 216 (2013).CrossRefGoogle Scholar
  39. 39.
    B. Saha, R. Thapa, and K.K. Chattopadhyay, Solid State Commun. 145, 33 (2008).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Semiconductor Research Lab, Department of PhysicsGurukula Kangri UniversityHaridwarIndia
  2. 2.Department of PhysicsTKCOE Teerthanker Mahaveer UniversityMoradabadIndia

Personalised recommendations