Journal of Electronic Materials

, Volume 48, Issue 10, pp 6857–6865 | Cite as

Realistic Creep Characterization for Sn3.0Ag0.5Cu Solder Joints in Flip Chip BGA Package

  • Ho Hyung Lee
  • Jae B. KwakEmail author


Creep tests were performed using a fixture composed of a spring, a micrometer and a heating pad to apply both heat and constant compressive load and elevated temperature to the actual solder joint. A microscopic digital image correlation technique was used to measure creep strains. A full-field deformation map of the cross-sectioned solder joint was generated as different constant loads were applied under different isothermal conditions on Sn3.0Ag0.5Cu flip chip ball grid array solder joints. Nonlinear regression was used to generate constitutive properties using the Garofalo hyperbolic sine model. The obtained constitutive properties were used to perform a finite element analysis simulation to compare the model with experimental results, which showed good agreement.


Creep digital image correlation (DIC) Sn3.0Ag0.5Cu solder ball grid array (BGA) finite element analysis (FEA) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by a research grant from Chosun University (Grant No. K207814001-1), 2018.


  1. 1.
    S. Mukherjee, M. Nuhi, A. Dasgupta, and M. Modarres, ASME J. Electron. Packag. 138, 030801 (2016). 10.1115/1.4033375.CrossRefGoogle Scholar
  2. 2.
    T.R. Bieler, H. Jiang, L.P. Lehman, T. Kirkpatrick, and E.J. Cotts, IEEE Trans. Compon. Packag. Technol. 31, 370 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Guo, A. Kunwar, H. Ma, J. Liu, S. Li, J. Sun, N. Zhao, and H. Ma, in 16th International Conference on Electronic Packaging Technology (2015).Google Scholar
  4. 4.
    J.H. Lau and S.H. Pan, Int. J. Microcirc. Electron. Packag 24, 1 (2001).Google Scholar
  5. 5.
    E.H. Amalu and N.N. Ekere, J. Manuf. Syst. 39, 9 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, and H. Reichl, in IEEE, 53rd Electronic Components and Technology Conference, New Orleans, LA, 27–30 May 2003, pp. 603–610 (2003).Google Scholar
  7. 7.
    R. Darveaux and K. Banerji, IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 1013 (1992).CrossRefGoogle Scholar
  8. 8.
    J.H. Lau, Ball Grid Array Technology (New York: McGraw-Hill Inc, 1994).Google Scholar
  9. 9.
    P.T. Vianco, J.A. Rejent, and A.C. Kilgo, J. Electron. Mater. 33, 1389 (2004).CrossRefGoogle Scholar
  10. 10.
    Y. Sun and J.H.L. Pang, Microelectron. Reliab. 48, 310 (2008).CrossRefGoogle Scholar
  11. 11.
    D. Herkommer, M. Reid, and J. Punch, J. Electron. Mater. 38, 2085 (2009).CrossRefGoogle Scholar
  12. 12.
    D. Herkommer, J. Punch, and M. Reid, Microelectron. Reliab. 50, 116 (2010).CrossRefGoogle Scholar
  13. 13.
    D. Herkommer, J. Punch, and M. Reid, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 275 (2013).CrossRefGoogle Scholar
  14. 14.
    G. Cuddalorepatta and A. Dasgupta, Acta Materilia 58, 5989 (2010).CrossRefGoogle Scholar
  15. 15.
    S. Wiese, M. Roellig, M. Mueller, S. Rzepka, K. Nocke, C. Luhmann, F. Kraemer, K. Meier, and K.J. Wolter, in IEEE, 1st Electronics System integration Technology Conference, Dresden, Germany, 5–7 Sep 2006.Google Scholar
  16. 16.
    Q. Xiao and W.D. Armstrong, J. Electron. Mater. 34, 196 (2005).CrossRefGoogle Scholar
  17. 17.
    J. Kwak, J. Mech. Sci. Technol. 28, 4899 (2014).CrossRefGoogle Scholar
  18. 18.
    P. Lall, K. Mirza, and J. Suhling, in 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, pp. 519–529 (2016).Google Scholar
  19. 19.
    P. Lall, D. Zhang, V. Yadav, and D. Locker, Microelectron. Reliab. 62, 4 (2016).CrossRefGoogle Scholar
  20. 20.
    S. Hamada, T. Fujisawa, M. Koyama, N. Koga, N. Nakada, T. Tsuchiyama, M. Ueda, and H. Noguchi, Mater. Charact. 98, 140 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Sun, L. Jin, J. Dong, W. Ding, and A.A. Luo, Mater. Charact. 119, 195 (2016).CrossRefGoogle Scholar
  22. 22.
    D. Lunt, A. Orozco-Caballero, R. Thomas, P. Honniball, P. Frankel, M. Preuss, and J. Quinta da Fonseca, Mater. Charact. 139, 355 (2018).CrossRefGoogle Scholar
  23. 23.
    R.D. Pendse and P. Zhou, Microelectron. Reliab. 42, 301 (2002).CrossRefGoogle Scholar
  24. 24.
    S. Park, R. Dhakal, L. Lehman, and E.J. Cotts, Acta Mater. 55, 3253 (2007).CrossRefGoogle Scholar
  25. 25.
    K.A. Kasvayee, E. Ghassemali, K. Salomonsson, S. Sujakhu, S. Castagne, and A.E.W. Jarfors, Mater. Charact. 140, 333 (2018).CrossRefGoogle Scholar
  26. 26.
    Y. Yuan, J. Huang, X. Peng, C. Xiong, J. Fang, and F. Yuan, Opt. Lasers Eng. 52, 75 (2014).CrossRefGoogle Scholar
  27. 27.
    Y. Yuan, Q. Zhan, C. Xiong, and J. Huang, Opt. Lasers Eng. 97, 52 (2017).CrossRefGoogle Scholar
  28. 28.
    D. Lecompte, A.S. Smits, S. Bossuyt, H. Sol, J. Vantomme, D. Van Hemelrijck, and A.M. Habraken, Opt. Lasers Eng. 44, 1132 (2006).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Apple Inc.CupertinoUSA
  2. 2.Department of Mechanical System & Automotive EngineeringChosun UniversityGwangjuRepublic of Korea

Personalised recommendations