Journal of Electronic Materials

, Volume 48, Issue 10, pp 6598–6606 | Cite as

Effect of Au Addition on the Crystallinity and Electrical Properties of Thermally Strained LaNiO3−δ Thin Films

  • M. W. Zhu
  • D. C. Shi
  • X. Zhao
  • N. Jia
  • C. Z. LiuEmail author


We prepared Au-LaNiO3−δ (Au-LNO) nanocomposite thin films by a sol–gel coating method. The effects of the doped Au on the microstructure and electrical properties of the Au-LNO films under different types of thermal strain were investigated. Introduction of Au into the LNO films changed their preferential orientation and markedly lowered their room-temperature resistivity. Moreover, the resistivity of the films containing Au nanoparticles showed negligible dependence on thermal strain, in contrast to the behavior of Au-free LNO films. We performed microstrain analysis and x-ray photoelectron spectroscopy to explore the strain–resistivity relationship of the films. Microstrain was closely related to the density of oxygen vacancies in LNO films and dominated the change in electrical properties of polycrystalline LNO films. The addition of Au promoted crystallization of the LNO films and decreased the density of oxygen vacancies, which stabilized the microstrain in the films under different external strain and accounted for the strain independence of the resistivity of the Au-LNO films.


Conductive oxide sol–gel process nanocomposite film microstrain oxygen vacancy 



This work was financially supported by the National Natural Science of Foundation of China (nos.51202256 and 51571057) and the Fundamental Research Funds for the Central Universities (no.N170204012).


  1. 1.
    P.D.C. King, H.I. Wei, Y.F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Bozovic, D.G. Schlom, and K.M. Shen, Nat. Nanotechnol. 9, 443 (2014).CrossRefGoogle Scholar
  2. 2.
    H.H. Chen, A.J. Millis, and C.A. Marianetti, Phys. Rev. Lett. 111, 116403 (2013).CrossRefGoogle Scholar
  3. 3.
    B. Geisler and R. Pentcheva, Phys. Rev. Mater. 2, 055403 (2018).CrossRefGoogle Scholar
  4. 4.
    X.X. Huang, X.G. Tang, J.L. Lai, Y.P. Jiang, Q.X. Liu, and D.P. Xiong, J. Electron. Mater. 10, 3783 (2015).CrossRefGoogle Scholar
  5. 5.
    R. Li, X.G. Tang, Y.P. Jiang, Y.K.Q.X. Liu, and L.L. Jiang, J. Mater. Sci.: Mater. Electron. 28, 12646 (2017).Google Scholar
  6. 6.
    K. Tsubouchi, I. Ohkubo, H. Kumigashira, Y. Masumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, and M. Oshima, Appl. Phys. Lett. 92, 262109 (2008).CrossRefGoogle Scholar
  7. 7.
    L. Qiao and X.F. Bi, Acta Mater. 57, 4109 (2009).CrossRefGoogle Scholar
  8. 8.
    E.J. Moon, J.M. Rondinelli, N. Prasai, B.A. Gray, M. Kareev, J. Chakhalian, and J.L. Cohn, Phys. Rev. B 85, 121106 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Wu, E. Benckiser, M.W. Haverkort, A. Frano, Y. Lu, U. Nwankwo, S. Brueck, P. Audehm, E. Goering, S. Macke, V. Hinkov, P. Wochner, G. Christiani, S. Heinze, G. Logvenov, H.U. Habermeier, and B. Keimer, Phys. Rev. B 88, 125124 (2013).CrossRefGoogle Scholar
  10. 10.
    S.J. May, J.W. Kim, J.M. Rondinelli, E. Karapetrova, N.A. Spaldin, A. Bhattacharya, and P.J. Ryan, Phys. Rev. B 82, 014110 (2010).CrossRefGoogle Scholar
  11. 11.
    G.S. Wang, D. Remiens, E. Dogheche, and X.L. Dong, Appl. Phys. A 88, 657 (2007).CrossRefGoogle Scholar
  12. 12.
    G. Bai, Z.G. Liu, X.B. Yan, and C.C. Zhang, J. Appl. Phys. 116, 054103 (2014).CrossRefGoogle Scholar
  13. 13.
    B.L. Peng, Q. Zhang, Y.N. Lyu, L.J. Liu, X.J. Lou, C. Shaw, H.T. Huang, and Z.L. Wang, Nano Energy 47, 285 (2018).CrossRefGoogle Scholar
  14. 14.
    M.W. Zhu, H.L. Wang, H. Lei, Y.J. Zhang, N. Jia, and Z.J. Wang, Appl. Phys. A 122, 364 (2016).CrossRefGoogle Scholar
  15. 15.
    D. Misra and T.K. Kundu, J. Electron. Mater. 46, 150 (2017).CrossRefGoogle Scholar
  16. 16.
    M.W. Zhu, P. Komissinskiy, A. Radetinac, Z.J. Wang, and L. Alff, J. Appl. Phys. 117, 155306 (2015).CrossRefGoogle Scholar
  17. 17.
    J.D. Sayre, K.T. Delaney, N.A. Spaldin, Interplay between strain and oxygen vacancies in lanthanum aluminate. (arXiv by Cornell Univerisity, 2012), Accessed 7 Feb. 2012.
  18. 18.
    F. Conchon, A. Boulle, R. Guinebretiere, C. Girardot, S. Pignard, J. Kreisel, F. Weiss, E. Dooryhee, and J. Hodeau, Appl. Phys. Lett. 91, 192110 (2007).CrossRefGoogle Scholar
  19. 19.
    B.A. Akgun, C. Durucan, and N.P. Mellott, J. Sol Gel. Sci. Technol. 58, 277 (2011).CrossRefGoogle Scholar
  20. 20.
    X.K. Ning, Z.J. Wang, and Z.D. Zhang, Adv. Funct. Mater. 24, 5393 (2014).CrossRefGoogle Scholar
  21. 21.
    N. Jia, Y.D. Wang, S.D. Wu, W.Z. Han, Y.N. Wang, J.N. Deng, and P.K. Liaw, Script Mater. 54, 1247 (2006).CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, F. Zhou, and E.J. Lavernia, Metall. Mater. Trans. A 34A, 1349 (2003).CrossRefGoogle Scholar
  23. 23.
    H.P. Klug and L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd ed. (New York: Wiley, 1974), pp. 618–687.Google Scholar
  24. 24.
    M.F. Ashby and Y.J.M. Brechet, Acta Mater. 51, 5801 (2003).CrossRefGoogle Scholar
  25. 25.
    J. Son, P. Moetakef, J.M. Lebeau, D. Ouellette, L. Balents, S.J. Allen, and S. Stemmer, Appl. Phys. Lett. 96, 062114 (2010).CrossRefGoogle Scholar
  26. 26.
    K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 76, 155104 (2007).CrossRefGoogle Scholar
  27. 27.
    J.J. Zhang, H. Zheng, Y. Ren, and J.F. Mitchell, Cryst. Growth Des. 17, 2730 (2017).CrossRefGoogle Scholar
  28. 28.
    N. Gayathri, A.K. Raychaudhuri, X.Q. Xu, J.L. Peng, and R.L. Greene, J. Phys.: Condens. Matter 10, 1323 (1998).Google Scholar
  29. 29.
    Y.D. Wang, R. Lin Peng, X.L. Wang, and R.L. McGreevy, Acta Mater. 50, 1717 (2002).CrossRefGoogle Scholar
  30. 30.
    L. Qiao and X.F. Bi, Thin Solid Films 519, 943 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. W. Zhu
    • 1
  • D. C. Shi
    • 2
  • X. Zhao
    • 2
  • N. Jia
    • 2
  • C. Z. Liu
    • 1
    Email author
  1. 1.School of Material Science and EngineeringShenyang Aerospace UniversityShenyangPeople’s Republic of China
  2. 2.Key Laboratory for Anisotropy and Texture of Materials (ATM)Northeastern UniversityShenyangPeople’s Republic of China

Personalised recommendations