Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6561–6569 | Cite as

Measurement of Electrical Properties of Sn-Bi-In Alloys

  • M. R. Kumar
  • C. K. BeheraEmail author
  • S. Mohan
Article
  • 16 Downloads

Abstract

The electrical properties of Sn-Bi-In ternary alloys were measured using the four-point probe method along three cross sections of the phase diagram (ratio of tin to bismuth 2:1, 1:1 and 1:2). The current–voltage relationship was measured for all the alloys from 38°C to 90°C. The variation of electrical resistivity with temperature was studied for all the ternary alloys and Pb-Sn binary alloys using the four-point probe method. The resistivity of ternary alloys was compared with Pb-Sn binary alloys. The resistivity of a few of the ternary alloys, 7Sn-3Bi-90In, 5Sn- 5Bi-90In and 3Sn-7Bi-90In, were close to the values of Pb-Sn alloys.

Keywords

Electrical property resistivity Sn-Bi-In lead-free system voltage effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    M.R. Kumar, C.K. Behera, and S. Mohan, J. Electron. Mater. 45, 4314 (2016).CrossRefGoogle Scholar
  2. 2.
    T.P. Vianco, Proceesdings of the Technical Program on Surface Mount (San Jose, CA: International, 1993).Google Scholar
  3. 3.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995).CrossRefGoogle Scholar
  4. 4.
    D. Dreyer and W. Muller, Int. J. Solid Struct. 37, 3841 (2000).CrossRefGoogle Scholar
  5. 5.
    K.C.R. Abell and Y.L. Shen, Acta Mater. 50, 3191 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Kamal and E.S. Gauda, Mater. Manufact. Proc. 21, 736 (2006).Google Scholar
  7. 7.
    M. Salimin Bin Jahari (Ph.D. thesis, Universiti Sains, Malaysia, 2008).Google Scholar
  8. 8.
    M. Kamal, M. Meikhail, A.E. Bediwi, and E. Gouda, Radiat. Eff. Defect. Solids 160, 7 (2005).Google Scholar
  9. 9.
    M. Kamal and E. Gouda, Cryst. Res. Technol. 41, 1210 (2006).CrossRefGoogle Scholar
  10. 10.
    E. Gouda, Mater. Manufac. Proc. 22, 842 (2007).CrossRefGoogle Scholar
  11. 11.
    M. Kamal and E. Gouda, Mater. Electron. 19, 81 (2008).CrossRefGoogle Scholar
  12. 12.
    M. Kamal, E. Gouda, and L. Marei, Cryst. Res. Technol. 12, 1308 (2009).CrossRefGoogle Scholar
  13. 13.
    E. Gouda and M. Kamal, Lamb. Acade. Publishing Book (2012).Google Scholar
  14. 14.
    E. Gouda and H. Abdel Aziz, Mater. Sci. Eng., B 6, 2 (2012).Google Scholar
  15. 15.
    E. Gouda, A. Mahasi, K. Hadadi, and A. Faqeeh, Int. J. Phys. Astron. 2, 2 (2014).Google Scholar
  16. 16.
    R.M. Shalaby, Int. J. Phys. Res. 3, 1 (2013).Google Scholar
  17. 17.
    E. Cadirli, U. Boyuk, H. Kaya, and N. Marasli, J. Non-Crystal. Solids 357, 2876 (2011).CrossRefGoogle Scholar
  18. 18.
    E. Goudal, A. Mahasi, K. Hadadi, and A. Faqeeh, Int. J. Phys. Astron. 2, 123 (2014).Google Scholar
  19. 19.
    D. Gray, American Institute of Physics Hand Book (New York: McGraw Hill, 1957).Google Scholar
  20. 20.
    T. Gancarz, P. Fima, and J. Pstrus, J. Mater. Eng. Perform. 23, 1524 (2013).CrossRefGoogle Scholar
  21. 21.
    E. Cadirli, H. Kaya, A. Gumus, and I. Yilmazer, J. Mater. Eng. Perform. 15, 490 (2006).CrossRefGoogle Scholar
  22. 22.
    R. Kisiel, W. Gasior, Z. Moser, J. Pstrus, K. Bukat, and J. Sitek, J. Phase Equilibria Diffus 25, 122 (2004).CrossRefGoogle Scholar
  23. 23.
    F.M. Smiths, Bell Syst. Tech. J. 37, 711 (1958).CrossRefGoogle Scholar
  24. 24.
    L.B. Valdes, Proc. I. R. E. 42, 420 (1954).CrossRefGoogle Scholar
  25. 25.
    R. Fogclholm, O. Rapp, and G. Grimvall, Am. Phys. Soc. 23, 3845 (1980).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations