Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6617–6630 | Cite as

Enhanced Photocatalytic Activity of SrMoO4 via SrMo(O, N)3 Formation by Annealing in NH3 Atmosphere

  • Shao Peng Wang
  • Zi Feng Yao
  • Ling Yun Zhang
  • Yong Lai Liu
  • Zhen Xiang DaiEmail author
  • Gan Hong ZhengEmail author
Article
  • 15 Downloads

Abstract

Via the hydrothermal method, one nitrogen-doped molybdate SrMoO4 photocatalyst was synthesized. In the synthesization process, further nitrogenization technique under a high-temperature NH3 atmosphere at different temperatures was also adopted. The obtained samples were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and UV-Visible absorption spectroscopy. The XRD and XPS results suggest that the SrMo(O,N)3 phase appears with the sintering temperature being 500°C. The absorption edge of SrMoO4 material is red-shifted to the visible part of the spectrum with N-doping, and then visible light photocatalytic activity is enabled. When the nitridtion temperature is up to 900°C, the photocatalytic degradation efficiency of methyl blue is increased up to 98% in 140 min. The excellent photocatalytic performance is ascribed to the following two factors induced by N doping. One is the formation of one phase SrMo(O,N)3, and the other is the formation of one heterojunction between SrMo(O,N)4 and SrMo(O,N)3. The heterojunction efficiently separates the photogenerated charge carriers and eventually reduces the recombination of the photogenerated electron-hole pairs. Moreover, one possible degradation pathway and the corresponding photocatalytic mechanism are both discussed.

Keywords

SrMoO4 NH3 atmosphere annealing photocatalytic activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

This work was financially supported by the National Key R&D Program of China (2017YFA0403503), the open fund for Discipline Construction,Institute of Physical Science and Information Technology, Anhui University, Scientific Research Innovation of College Students (201810357224 and 201810357013), and AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P.R.China.

References

  1. 1.
    J.H. Guo, L. Shi, J.Y. Zhao, Y. Wang, K.B. Tang, W.Q. Zhang, C.Z. Xie, and X.Y. Yuan, Appl. Catal. B-Environ. 224, 692 (2018).CrossRefGoogle Scholar
  2. 2.
    J. Song, L. Zhang, J. Yang, X.H. Huang, and J.S. Hu, Ceram. Int. 43, 9214 (2017).CrossRefGoogle Scholar
  3. 3.
    E. Luévano-Hipólito, A. Martínez-de la Cruz, and Q. Yu, Appl. Catal. A-Gen. 468, 322 (2013).CrossRefGoogle Scholar
  4. 4.
    G. Gyawali, R. Adhikari, B. Joshi, T.H. Kim, V. Rodriguez-Gonzalez, and S.W. Lee, J. Hazard. Mater. 15, 263 (2013).Google Scholar
  5. 5.
    J.H. Bi, L. Wu, Y.F. Zhang, Z.H. Li, J.Q. Li, and X.Z. Fu, Appl. Catal. B-Environ. 91, 135 (2009).CrossRefGoogle Scholar
  6. 6.
    W. Wang, M.O. Tadé, and Z.P. Shao, Prog. Mater Sci. 92, 33 (2018).CrossRefGoogle Scholar
  7. 7.
    S.A. Ansari, M.M. Khan, M.O. Ansari, and M.H. Cho, New J. Chem. 40, 3000 (2016).CrossRefGoogle Scholar
  8. 8.
    H. Sudrajat and S. Babel, J. Water Process Eng. 16, 309 (2016).CrossRefGoogle Scholar
  9. 9.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga, Science 293, 269 (2001).CrossRefGoogle Scholar
  10. 10.
    N. Delegan, R. Daghrir, P. Drogui, and M.A. El Khakani, J. Appl. Phys. 116, 33 (2014).CrossRefGoogle Scholar
  11. 11.
    D. Li and H. Haneda, J. Photochem. Photobiol. A-Chem. 155, 171 (2003).CrossRefGoogle Scholar
  12. 12.
    A. Mukherji, C. Sun, S.C. Smith, G.Q. Lu, and L. Wang, J. Phys. Chem. C 115, 15674 (2011).CrossRefGoogle Scholar
  13. 13.
    B. Siritanaratkul, K. Maeda, T. Hisatomi, and K. Domen, Chemsuschem 4, 74 (2011).CrossRefGoogle Scholar
  14. 14.
    D.R. Liu, Y.S. Jiang, and G.M. Gao, Chemoshpere 83, 1546 (2011).CrossRefGoogle Scholar
  15. 15.
    W.J. Li, D. Li, X. Gao, A. Gurlo, S. Zander, P. Jones, A. Navrotsky, Z.J. Shen, R. Riedel, and E. Lonescu, Dalton Trans. 44, 8238 (2015).CrossRefGoogle Scholar
  16. 16.
    H.A. Hopper, D.E. Macphee, and A.C. Mclaughlin, J. Solid State Chem. 242, 248 (2016).CrossRefGoogle Scholar
  17. 17.
    J.C. Sczancoski, L.S. Cavalcante, M.R. Joya, J.A. Varela, P.S. Pizani, and E. Longo, Chem. Eng. J. 140, 632 (2008).CrossRefGoogle Scholar
  18. 18.
    S.B. Zhang, Y.P. Sun, B.C. Zhao, X. Luo, C.Y. Hao, X.B. Zhu, and W.H. Song, J. Appl. Phys. 102, 103903 (2007).CrossRefGoogle Scholar
  19. 19.
    D. Logvinovich, R. Aguiar, R. Robert, M. Trottmann, S.G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Solid State Chem. 180, 2649 (2007).CrossRefGoogle Scholar
  20. 20.
    D. Logvinovich, J. Hejtmánek, M. Maryko, N. Homazava, P. Tomes, R. Aguiar, S.G. Ebbinghaus, A. Reller, and A. Weidenkaff, J. Appl. Phys. 105, 23522 (2009).CrossRefGoogle Scholar
  21. 21.
    Y.N. Zhu, G.H. Zheng, Z.X. Dai, J.J. Mu, and Z.F. Yao, J. Mater. Sci. Technol. 33, 834 (2017).CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, Z.F. Xu, L.F. Wang, S.H. Gao, and S.J. Yuan, J. Alloy. Compd. 649, 1151 (2015).CrossRefGoogle Scholar
  23. 23.
    G.M. Wang, Y.C. Ling, H.Y. Wang, X.Y. Yang, C.C. Wang, J.Z. Zhang, and Y. Li, Energy Environ. Sci. 5, 6180 (2012).CrossRefGoogle Scholar
  24. 24.
    Y. Luo, J.W. Xue, X.D. Zhu, J. Daniel, X. Gao, S. Sun, C. Gao, and J. Bao, RSC Adv. 7, 5821 (2017).CrossRefGoogle Scholar
  25. 25.
    A. Borgschulte, O. Sambalova, R. Delmelle, S. Jenatsch, R. Hany, and F. Nüesch, Sci Rep. 7, 40761 (2017).CrossRefGoogle Scholar
  26. 26.
    Y.T. Wang, J.M. Cai, M.Q. Wu, J.H. Chen, W.Y. Zhao, Y. Tian, T. Ding, J. Zhang, Z. Jiang, and X.G. Li, Appl. Catal. B-Environ. 239, 398 (2018).CrossRefGoogle Scholar
  27. 27.
    I. Atkinson, V. Parvulescu, J. Pandele Cusu, E.M. Anghel, M. Voicescu, D. Culita, S. Somacescu, C. Munteanu, M. Šćepanović, Z.V. Popovic, and V. Fruth, J. Photochem. Photobiol. A-Chem. 368, 41 (2019).CrossRefGoogle Scholar
  28. 28.
    J.B. Varley, A. Janotti, and C.G. Van de Walle, Adv. Mater. 23, 2343 (2011).CrossRefGoogle Scholar
  29. 29.
    M. Yang, J.H. Bae, C.W. Yang, A. Benayad, and H. Baik, J. Anal. At. Spectrom. 28, 482 (2013).CrossRefGoogle Scholar
  30. 30.
    H.Y. Wang, P. Xu, and T.M. Wang, Thin Solid Films 388, 68 (2001).CrossRefGoogle Scholar
  31. 31.
    J. Kubo and W. Ueda, Mater. Res. Bull. 44, 906 (2009).CrossRefGoogle Scholar
  32. 32.
    J.J. Zhang, R.Q. Li, L. Liu, L.L. Li, L.C. Zou, S.C. Gan, and G.J. Ji, Ultrason. Sonochem. 21, 1736 (2014).CrossRefGoogle Scholar
  33. 33.
    D.L. Wood and J. Tauc, Phys. Rev. B 5, 3144 (1972).CrossRefGoogle Scholar
  34. 34.
    R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martionez-Garcia, and A. Segura, Europhys. Lett. 83, 37002 (2008).CrossRefGoogle Scholar
  35. 35.
    Y.N. Zhu, G.H. Zheng, Z.X. Dai, L.Y. Zhang, and Y.Q. Ma, J. Mater. Sci. Technol. 33, 23 (2017).CrossRefGoogle Scholar
  36. 36.
    H.F. Shi, X.K. Li, H. Iwai, Z.G. Zou, and J.H. Ye, J. Phys. Chem. Solids 70, 931 (2009).CrossRefGoogle Scholar
  37. 37.
    Z.F. Yao, G.H. Zheng, Z.X. Dai, and L.Y. Zhang, Appl. Organomet. Chem. 32, e4412 (2018).CrossRefGoogle Scholar
  38. 38.
    J.Z. Wang, J. Lin, X.G. Wang, S.N. Yang, Y.L. Zhao, Y.W. Wu, S.Y. Dong, J.Y. Sun, and J.H. Sun, J. Colloid Interface Sci. 505, 805 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Shao Peng Wang
    • 1
    • 2
  • Zi Feng Yao
    • 1
    • 2
  • Ling Yun Zhang
    • 3
  • Yong Lai Liu
    • 1
    • 2
  • Zhen Xiang Dai
    • 1
    • 2
    Email author
  • Gan Hong Zheng
    • 1
    • 2
    Email author
  1. 1.School of Physics and Materials ScienceAnhui UniversityHefeiChina
  2. 2.Institute of Physical Science and Information Technology, Anhui UniversityHefeiChina
  3. 3.Department of Chemical and Materials EngineeringHefei UniversityHefeiChina

Personalised recommendations