Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6487–6502 | Cite as

Design and Optimization of Piezoelectric Transducer (PZT-5H Stack)

  • Muhammad Abdullah Sheeraz
  • Zubair ButtEmail author
  • Abdul Manan Khan
  • Shahid Mehmood
  • Ahsan Ali
  • Muhammad Azeem
  • Abdul Nasir
  • Talha Imtiaz
Article
  • 21 Downloads

Abstract

Piezoelectric materials are widely used as an input transducer to harvest electrical energy. In this research, an optimized piezoelectric transducer (PZT-5H) has been designed for maximum efficiency. The transition system consists of an ideal mass, spring and damper. It has been modeled using MATLAB Simscape Toolbox™. Routh–Hurwitz criterion is applied to assess the stability of the transition system. The root-locus and step-response plots are generated for the stability analysis. Effects of varying stiffness, damping coefficient and thickness have been studied in designing of stack PZT-5H. The statistical analysis based on a Taguchi design of experiment and analysis of variance approaches is implemented to obtain the optimum output response from the energy harvester. Consequently, interval plots and a regression model are designed to establish an adequate relationship between the controllable factors and optimum output response of the energy harvester. The results are compared with the literature and they correlate well with each other.

Keywords

Piezoelectric material (PZT-5H) transition system stability analysis Taguchi method ANOVA approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the support of the Mechatronics Engineering Department of the University of Engineering and Technology (UET) Taxila, Sub-Campus Chakwal, Pakistan for providing technical assistance to carry out this research.

References

  1. 1.
    S. Chalasani and J. M. Conrad, in IEEE Southeast Con 2008 (IEEE, 2008), pp. 442–447.Google Scholar
  2. 2.
    H.A. Sodano, D.J. Inman, and G. Park, J. Intell. Mater. Syst. Struct. 16, 799 (2005).CrossRefGoogle Scholar
  3. 3.
    J.A. Paradiso and T. Starner, IEEE Pervasive Comput. 1, 10 (2005).  https://doi.org/10.1109/mprv.2005.9.Google Scholar
  4. 4.
    Z.L. Wang and W. Wu, Angew. Chem. Int. Ed. 51, 11700 (2012).CrossRefGoogle Scholar
  5. 5.
    F. Yildiz, J. Technol. Stud. 35, 40 (2009).CrossRefGoogle Scholar
  6. 6.
    E.K. Reilly, F. Burghardt, R. Fain, and P. Wright, Smart Mater. Struct. 20, 125006 (2011).CrossRefGoogle Scholar
  7. 7.
    G. Altena, M. Renaud, R. Elfrink, M.H. Goedbloed, C. De Nooijer, and R. Van Schaijk, J. Phys. Conf. Ser. 476, 012078 (2013).Google Scholar
  8. 8.
    T.H. Ng and W.H. Liao, J. Intell. Mater. Syst. Struct. 16, 785 (2005).CrossRefGoogle Scholar
  9. 9.
    Z. Butt, R.A. Pasha, F. Qayyum, Z. Anjum, N. Ahmad, and H. Elahi, J. Mech. Sci. Technol. 30, 3553 (2016).CrossRefGoogle Scholar
  10. 10.
    S. Saadon and O. Sidek, Energy Convers. Manag. 52, 500 (2011).CrossRefGoogle Scholar
  11. 11.
    Z. Abbas, S. Abbas, Z. Butt, and R.A. Pasha, J. Shanghai Jiaotong Univ. 23, 345 (2018).CrossRefGoogle Scholar
  12. 12.
    C.B. Williams and R.B. Yates, Sensors Actuators. A Phys. 52, 8 (1996).Google Scholar
  13. 13.
    M.U. Khan, Z. Butt, H. Elahi, W. Asghar, Z. Abbas, M. Shoaib, and M.A. Bashir, Microsyst. Technol. (2018).  https://doi.org/10.1007/s00542-018-4182-x.Google Scholar
  14. 14.
    M. Asif, F. Rasool, Z. Butt, M. Shahzad, N. Ahmad, and A.R. Chishti, Trans. Electr. Electron. Mater. 20, 141 (2019).CrossRefGoogle Scholar
  15. 15.
    Q. Zhao, H. Lei, G. He, J. Di, D. Wang, P. Tan, H. Jin, and M. Cao, Ceram. Int. 42, 1314 (2016).CrossRefGoogle Scholar
  16. 16.
    G.K. Ottman, H.F. Hofmann, A.C. Bhatt, G.A. Lesieutre, IEEE Trans. Power Electron. 17, 669 (2002).CrossRefGoogle Scholar
  17. 17.
    G.A. Lesieutre, G.K. Ottman, and H.F. Hofmann, J. Sound Vib. 269, 991 (2004).CrossRefGoogle Scholar
  18. 18.
    N.G. Elvin, A.A. Elvin, and M. Spector, Smart Mater. Struct. 10, 293 (2001).CrossRefGoogle Scholar
  19. 19.
    H. Elahi, A. Israr, R. F. Swati, H. M. Khan, and A. Tamoor, in 2017 5th International Conference of Aerospace and Mechanical Engineering ICASE 2017, vol. 1 (2018), pp. 1–5.Google Scholar
  20. 20.
    Q.L. Zhao, G.P. He, J.J. Di, W.L. Song, Z.L. Hou, P.P. Tan, D.W. Wang, M.S. Cao, ACS Appl. Mater. Interfaces 9, 24696 (2017).CrossRefGoogle Scholar
  21. 21.
    Z. Butt and R. A. Pasha, IOP Conf. Ser. Mater. Sci. Eng. 146, 012016 (2016).Google Scholar
  22. 22.
    L. Hai-Bo, C. Mao-Sheng, Y. Jie, W. Da-Wei, Z. Quan-Liang, and W. Fu-Chi, Chin. Phys. B 17, 4323 (2008).CrossRefGoogle Scholar
  23. 23.
    H.A. Sodano, D.J. Inman, and G. Park, J. Intell. Mater. Syst. Struct. 16, 67 (2004).CrossRefGoogle Scholar
  24. 24.
    W. Da-Wei, J. Hai-Bo, Y. Jie, W. Bao-Li, Z. Quan-Liang, Z. De-Qing, and C. Mao-Sheng, Chin. Phys. Lett. 27, 047701 (2010).CrossRefGoogle Scholar
  25. 25.
    Z. Butt, Z. Anjum, A. Sultan, F. Qayyum, H.M. Khurram Ali, and S. Mehmood, J. Electr. Eng. Technol. 12, 846 (2017).CrossRefGoogle Scholar
  26. 26.
    R. Lu, G.S. Jiang, B. Li, Q.L. Zhao, D.Q. Zhang, J. Yuan, and M.S. Cao, Chin. Phys. Lett. 29, 5 (2012).Google Scholar
  27. 27.
    K. Viswanath Allamraju, Mater. Today Proc. 5, 5322 (2018).Google Scholar
  28. 28.
    A. Qabur and K. Alshammari, Innov. Energy Res. 07, 1 (2018).CrossRefGoogle Scholar
  29. 29.
    J.A. Paradiso and T. Starner, IEEE Pervasive Comput. 4, 18 (2005).CrossRefGoogle Scholar
  30. 30.
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, Proc. IEEE 96, 1457 (2008).CrossRefGoogle Scholar
  31. 31.
    M. Lazarek, P. Brzeski, and P. Perlikowski, Mech. Mach. Theory 119, 161 (2018).CrossRefGoogle Scholar
  32. 32.
    C. Li and F. Zhang, Adv. Differ. Equ. (2011).  https://doi.org/10.1155/2011/213485.Google Scholar
  33. 33.
    E.K. Orhorhoro, D.S. Polytechnic, M.E. Onogbotsere, D.S. Polytechnic, A.E. Ikpe, U. Kingdom, and U. Kingdom, ELK Asia Pacific, J. Mech. Eng. Res. 2, 2 (2016).Google Scholar
  34. 34.
    D.H. Wu, W.T. Chien, and Y.J. Tsai, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 480 (2005).CrossRefGoogle Scholar
  35. 35.
    M.H.S. Alrashdan, A.A. Hamzah, and B.Y. Majlis, Microsyst. Technol. 21, 1607 (2015).CrossRefGoogle Scholar
  36. 36.
    S. Mukhtar, W. Asghar, Z. Butt, Z. Abbas, M. Ullah, and R. Atta-Ur-Rehman, J. Cent. South Univ. 25, 2578 (2018).Google Scholar
  37. 37.
    W. Lin, Z. Li, W. Chen, and J. Zhou, Adv. Mater. Res. 267, 1005 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Muhammad Abdullah Sheeraz
    • 1
  • Zubair Butt
    • 1
    • 2
    Email author
  • Abdul Manan Khan
    • 1
  • Shahid Mehmood
    • 1
  • Ahsan Ali
    • 2
  • Muhammad Azeem
    • 1
  • Abdul Nasir
    • 1
  • Talha Imtiaz
    • 1
  1. 1.Department of Mechatronics EngineeringUniversity of Engineering and Technology TaxilaChakwalPakistan
  2. 2.Department of Mechanical EngineeringUniversity of Engineering and Technology TaxilaTaxilaPakistan

Personalised recommendations