Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6823–6834 | Cite as

Oxide-Free Copper Pastes for the Attachment of Large-Area Power Devices

  • Luca Del CarroEmail author
  • Alfred A. Zinn
  • Patrick Ruch
  • Florian Bouville
  • André R. Studart
  • Thomas Brunschwiler
Article
  • 42 Downloads

Abstract

Pastes based on copper (Cu) nanoparticles (NPs) are promising electronic-packaging materials for the attachment of high-power devices. However, the rapid oxidation of nanostructured Cu requires the use of reducing agents during processing, which makes it less suitable for attaching large-area dies (> 4 mm2). Recently, the functionalization of Cu-NP surfaces with a mixture of amines prevented oxidation, allowing for sintering without the need for reducing agents. Here we investigate the sintering mechanisms involved during die attachment using pastes of passivated Cu NPs, with particular focus on the critical role of the carrier solvents. Using 1-nonanol or 1-decanol as solvents, we first demonstrate the absence of Cu-oxide phases in the pastes after fabrication and the stability of the resulting nanostructured copper for as much as 30 min in air. By measuring the evolution of the electrical characteristics of the paste during drying and sintering, we show that electrically conductive agglomerates form among the NPs between 141°C and 144°C, independent of the carrier solvent used. The carrier solvent was found to affect mainly the densification temperature of the copper agglomerates. Because they lead to uniform sintering of the material, Cu pastes based on solvents with a low boiling point and high vapor pressure are preferable for attaching dies with area greater than 25 mm2. We show that dies with an area as large as 100 mm2 can be attached using a Cu paste based on 1-nonanol. These pastes enables the formation of temperature-resistant bonding for high-power devices using a simple and cost-effective approach.

Keywords

Sintering copper nanoparticles copper paste die attachment power electronic packaging power electronics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Supplementary material

11664_2019_7452_MOESM1_ESM.pdf (930 kb)
Supplementary material 1 (PDF 929 kb)

References

  1. 1.
    J. Nelson, The Physics of Solar Cells (London: Imperial College Press, 2003).CrossRefGoogle Scholar
  2. 2.
    Y. Mikamura, K. Hiratsuka, T. Tsuno, H. Michikoshi, S. Tanaka, T. Masuda, K. Wada, T. Horii, J. Genba, and T. Hiyoshi, IEEE Trans. Electron Devices 62, 382 (2015).CrossRefGoogle Scholar
  3. 3.
    P. Neudeck, R. Okojie, and L. Chen, Proc. IEEE 90, 1065 (2002).CrossRefGoogle Scholar
  4. 4.
    L. Lorenz, T. Erlbacher, O. Hilt, and K. Suganuma, Woodhead Publishing Series in Electronic and Optical Materials (Cambridge: Woodhead Publishing, 2018), pp. 3–53.Google Scholar
  5. 5.
    V.R. Manikam and K.Y. Cheong, IEEE Trans. Comp. Packag. Manuf. Technol. 1, 457 (2011).CrossRefGoogle Scholar
  6. 6.
    K. Suganuma, Woodhead Publishing Series in Electronic and Optical Materials (Cambridge: Woodhead Publishing, 2018), pp. 57–80.Google Scholar
  7. 7.
    European Commission. Directive 2011/65/EU of The European Parliament and of the Council of 8 June 2011ROHS, vol. 54, pp. 88–110 (2011).Google Scholar
  8. 8.
    K. Suganuma, S.J. Kim, and K.S. Kim, JOM 61, 64–71 (2009).CrossRefGoogle Scholar
  9. 9.
    J.G. Bai, J. Yin, Z. Zhang, G.Q. Lu, and J.D. van Wyk, IEEE Trans. Adv. Packag. 30, 506–510 (2007).CrossRefGoogle Scholar
  10. 10.
    T. Wang, X. Chen, G.Q. Lu, and G.Y. Lei, J. Electron. Mater. 36, 1333 (2007).CrossRefGoogle Scholar
  11. 11.
    R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2459 (2014).CrossRefGoogle Scholar
  12. 12.
    M. Gutierrez, N. Wang, M.K. Samani, L. Ye, and J. Liu, in IMAPS Nordic Conference on Microelectronics Packaging (NordPac), p. 151 (2017).Google Scholar
  13. 13.
    S. Magdassi, M. Grouchko, and A. Kamyshny, Materials (Basel) 3, 4626 (2010).CrossRefGoogle Scholar
  14. 14.
    W. Li, L. Li, Y. Gao, D. Hu, C.F. Li, H. Zhang, J. Jiu, S. Nagao, and K. Suganuma, J. Alloys Compd. 732, 240 (2018).CrossRefGoogle Scholar
  15. 15.
    S. Sun, Q. Guo, H. Chen, M. Li, and C. Wang, Microelectron. Reliab. 80, 2018 (2017).Google Scholar
  16. 16.
    L. Del Carro, J. Zuercher, S. Gerke, T. Wildsmith, G. Ramos, and T. Brunschwiler, in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE, p. 961 (2017).Google Scholar
  17. 17.
    J. Zurcher, L. Del Carro, G. Schlottig, D.N. Wright, A.S.B. Vardoy, M.M.V. Taklo, T. Mills, U. Zschenderlein, B. Wunderle, and T. Brunschwiler, in IEEE 66th Electronic Components and Technology Conference (ECTC), p. 343 (2016).Google Scholar
  18. 18.
    J. Liu, H. Chen, H. Ji, and M. Li, ACS Appl. Mater. Interfaces 8, 33289 (2016).CrossRefGoogle Scholar
  19. 19.
    A.A. Zinn, R.M. Stoltenberg, J. Chang, Y.L. Tseng, and S.M. Clark, in 16th International Conference on Nanotechnology-IEEE NANO, p. 367 (2016).Google Scholar
  20. 20.
    B.H. Lee, M.Z. Ng, A.A. Zinn, and C.L. Gan, in Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, IPFA, p. 102 (2015).Google Scholar
  21. 21.
    A.A. Zinn, R.M. Stoltenberg, J. Chang, Y.L. Tseng, S.M. Clark, and D.A.A. Cullen, in 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC) p 1 (2016).Google Scholar
  22. 22.
    M. Kanzaki, Y. Kawaguchi, H. Kawasaki, ACS Appl. Mater. Interfaces 9, 20852 (2017).Google Scholar
  23. 23.
    B.H. Lee, M.Z. Ng, A.A. Zinn, and C.L. Gan, in Proceedings of the Electronic Packaging Technology Conference, EPTC (2016).Google Scholar
  24. 24.
    A. Zinn, Lead Solder-Free Electronic (2009). https://patents.google.com/patent/US8105414B2/en.
  25. 25.
    K. Schnabl, L. Wentlent, K. Mootoo, S. Khasawneh, A.A. Zinn, J. Beddow, E. Hauptfleisch, D. Blass, and P. Borgesen, J. Electron. Mater. 43, 4515 (2014).Google Scholar
  26. 26.
    A.A. Zinn, P.P. Lu, Nanoparticle Composition and Methods of Making the Same (2013). https://patents.google.com/patent/US8486305B2/en
  27. 27.
    A.A. Zinn, Copper Nanoparticle Application Process for Low Temperature Printable, Flexible/Conformal Electronics and Antennas (2015). https://patents.google.com/patent/US9072185B2/en.
  28. 28.
    Y. Deng, A.D. Handoko, Y. Du, S. Xi, and B.S. Yeo, ACS Catal. 6, 2473 (2016).CrossRefGoogle Scholar
  29. 29.
    A.D. Handoko, S. Deng, Y. Deng, A.W.F. Cheng, K.W. Chan, H.R. Tan, Y. Pan, E.S. Tok, C.H. Sow, and B.S. Yeo, Catal. Sci. Technol. 6, 269 (2016).CrossRefGoogle Scholar
  30. 30.
    A. Soon, M. Todorova, B. Delley, and C. Stampfl, Phys. Rev. B 75, 125420 (2007).CrossRefGoogle Scholar
  31. 31.
    L. De Los Santos Valladares, D.H. Salinas, A.B. Dominguez, D.A. Najarro, S.I. Khondaker, T. Mitrelias, C.H.W. Barnes, J.A. Aguiar, and Y. Majima, Thin Solid Films 520, 6368 (2012).CrossRefGoogle Scholar
  32. 32.
    Z. Fang, Sintering of Advanced Materials (Woodhead Publishing Limited, 2010).Google Scholar
  33. 33.
    J. Habasaki, C. Leon, and K.L. Ngai, Dynamics of Glassy, Crystalline and Liquid Ionic Conductors, vol. 132 (Switzerland: Springer International Publishing, 2017).Google Scholar
  34. 34.
    A.J. Bard and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd ed. (New York: Wiley, 2001).Google Scholar
  35. 35.
    J.M. Montes, J.A. Rodríguez, and E.J. Herrera, Powder Metall. 46, 251 (2003).CrossRefGoogle Scholar
  36. 36.
    E.J. De Souza, M. Brinkmann, C. Mohrdieck, and E. Arzt, Langmuir 24, 8813 (2008).CrossRefGoogle Scholar
  37. 37.
    J. Zürcher, B.R. Burg, L. Del Carro, A.R. Studart, and T. Brunschwiler, Transp. Porous Media 125, 173 (2018).Google Scholar
  38. 38.
    R. Stadler, L. Del Carro, J. Zurcher, G. Schlottig, A.R. Studart, and T. Brunschwiler, in 2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). IEEE, p. 167 (2017).Google Scholar
  39. 39.
    T. Sugiyama, M. Kanzaki, R. Arakawa, and H. Kawasaki, J. Mater. Sci. Mater. Electron. 27, 7540 (2016).CrossRefGoogle Scholar
  40. 40.
    C. Kim, G. Lee, C. Rhee, and M. Lee, Nanoscale 7, 6627 (2015).CrossRefGoogle Scholar
  41. 41.
    F.F. Lange, J. Am. Ceram. Soc. 67, 83 (1984).CrossRefGoogle Scholar
  42. 42.
    Z.Z. Fang, H. Wang, X. Wang, and V. Kumar, Ceram. Trans. 209, 389 (2010).CrossRefGoogle Scholar
  43. 43.
    J.R. Groza, Nanostructured Mater. 12, 987 (1999).CrossRefGoogle Scholar
  44. 44.
    R.H.R. Castro, Sintering: Mechanisms of Convertion Nanodensification and Field Assisted Processes (Berlin, Heidelberg: Springer-Verlag, 2013).Google Scholar
  45. 45.
    S.K. Volkman, S. Yin, T. Bakhishev, K. Puntambekar, V. Subramanian, and M.F. Toney, Chem. Mater. 23, 4634 (2011).CrossRefGoogle Scholar
  46. 46.
    M. Zenou, O. Ermak, A. Saar, and Z. Kotler, J. Phys. D Appl. Phys. 47, 025501 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.IBM Research – ZurichRüschlikonSwitzerland
  2. 2.Complex Materials, Department of MaterialsETH ZürichZurichSwitzerland
  3. 3.Kuprion Inc.Palo AltoUSA

Personalised recommendations