Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6553–6560 | Cite as

Influence of Ni2+ Substitution for Zn2+ on Microwave Dielectric Properties of Zn1−xNixZrNb2O8 Ceramics

  • Mi XiaoEmail author
  • Peng Zhang
  • Hongrui Sun
  • Ziqi Zhou
  • Ping Zhang
Article
  • 18 Downloads

Abstract

Dependence of microwave dielectric properties on the crystal structure of Zn1−xNixZrNb2O8 was investigated as a function of NiO content (x = 0, 0.02, 0.04, 0.06, 0.08). Pure single phase with monoclinic wolframite structure was obtained through solid-state reacti. The unit-cell volume of the specimens decreased with NiO content because of the smaller ionic radius of Ni2+ than Zn2+. Dielectric constant (K) of the sintered specimen was affected by bond-ionicity. Quality factor (Q × f0) was analyzed depending on the lattice-energy. With the increase of Ni2+, temperature coefficient of resonant frequency (τf) of specimens increased due to the increase of B-site bond energy. The sample of Zn1−xNixZrNb2O8 (x = 0.08) sintered at 1250°C for 4 h showed excellent microwave dielectric properties, εr of 25.72, Q × f0 value of 73224 GHz, and τf of − 39.14 ppm/°C.

Keywords

Microwave dielectric properties bond ionicity lattice energy bond energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51877146).

References

  1. 1.
    G.G. Yao, C.J. Pei, J.G. Xu, P. Liu, J.P. Zhou, and H.W. Zhang, J. Mater. Sci.: Mater. Electron. 26, 7719 (2015).Google Scholar
  2. 2.
    Y.C. Chen, H.M. You, and K.C. Chang, J. Mater. Sci.: Mater. Electron. 26, 7614 (2015).Google Scholar
  3. 3.
    Q.W. Liao, L.X. Li, X. Ren, X.X. Yu, D. Guo, and M.J. Wang, J. Am. Ceram. Soc. 95, 3363 (2012).CrossRefGoogle Scholar
  4. 4.
    H.T. Wu and E.S. Kim, Ceram. Int. 42, 5785 (2016).CrossRefGoogle Scholar
  5. 5.
    X. Tang, H. Yang, Q.L. Zhang, and J.H. Zhou, Ceram. Int. 40, 12875 (2014).CrossRefGoogle Scholar
  6. 6.
    X.S. Lyu, L.X. Li, S. Zhang, H. Sun, B.W. Zhang, J.T. Li, and M.K. Du, Mater. Lett. 171, 129 (2016).CrossRefGoogle Scholar
  7. 7.
    P. Zhang, Y.G. Zhao, and H.T. Wu, Dalton Trans. 44, 16684 (2015).CrossRefGoogle Scholar
  8. 8.
    W.S. Xia, F.Y. Wang, G.Y. Zhang, K. Han, and D.C. Guo, J. Alloy. Compd. 656, 470 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Macavei and H. Schulz, Z. Krist-Cryst. Mater. 207, 193 (1993).Google Scholar
  10. 10.
    J.C. Phillips, Phys. Rev. Lett. 20, 550 (1968).CrossRefGoogle Scholar
  11. 11.
    J.C. Phillips and J.A. Van Vechten, Phys. Rev. Lett. 22, 705 (1969).CrossRefGoogle Scholar
  12. 12.
    Z.J. Wu and S.Y. Zhang, Int. J. Quantum Chen. 73, 433 (1999).CrossRefGoogle Scholar
  13. 13.
    P. Zhang, Y.G. Zhao, and L.X. Li, Phys. Chem. Chem. Phys. 17, 16692 (2015).CrossRefGoogle Scholar
  14. 14.
    Y.G. Zhao and P. Zhang, RSC Adv. 5, 97746 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Xiao, Y.S. Wei, Q.Q. Gu, and P. Zhang, J. Mater. Sci.-Mater. Electron. 29, 9963 (2018).CrossRefGoogle Scholar
  16. 16.
    R.T. Sanderson, J. Inorg. Nucl. Chem. 28, 1553 (1966).CrossRefGoogle Scholar
  17. 17.
    R.T. Sanderson, J. Inorg. Nucl. Chem. 30, 375 (1968).CrossRefGoogle Scholar
  18. 18.
    R.T. Sanderson, Chemical Bonds and Bond Energy (London: Academic Press, 1971).Google Scholar
  19. 19.
    R.T. Sanderson, J. Am. Ceram. Soc. 105, 2259 (1983).Google Scholar
  20. 20.
    R.D. Shannon, J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
  21. 21.
    C.L. Huang and S.H. Huang, J. Alloy. Compd. 515, 8 (2012).CrossRefGoogle Scholar
  22. 22.
    S.S. Batsanov, Russ. Chem. Rev. 51, 684 (1982).CrossRefGoogle Scholar
  23. 23.
    Q.W. Liao and L.X. Li, Dalton Trans. 41, 6963 (2012).CrossRefGoogle Scholar
  24. 24.
    D. Zhou, L.X. Pang, H. Wang, and X. Yao, Solid State Sci. 11, 1894 (2009).CrossRefGoogle Scholar
  25. 25.
    I.M. Reaney, E.L. Colla, and N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Mi Xiao
    • 1
    Email author
  • Peng Zhang
    • 1
  • Hongrui Sun
    • 1
  • Ziqi Zhou
    • 1
  • Ping Zhang
    • 1
  1. 1.Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Electrical and Information EngineeringTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations