Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6397–6405 | Cite as

Construction of 2D Bi2S3/CdS Nanosheet Arrays for Enhanced Photoelectrochemical Hydrogen Evolution

  • Mengru Yang
  • Yonghong Shi
  • Yuangang LiEmail author
  • Huajing Li
  • Ningdan Luo
  • Jin Li
  • Jing Fan
  • Anning Zhou
Article
  • 19 Downloads

Abstract

2D Bi2S3/CdS nanosheet arrays have been constructed by a simple three-step method. Firstly, BiOI nanosheet arrays have been electrochemically grown on the surface of conductive FTO substrate and then converted into Bi2S3 nanosheet arrays by ion exchange. Finally, CdS was hydrothermally deposited onto the surface of Bi2S3 nanosheet arrays to form hybrid Bi2S3/CdS nanosheet arrays. The obtained hybrid heterojunction arrays have been used as photoanodes for photoelectrochemical hydrogen evolution and showed enhanced performance and prolonged stability. The photocurrent density of the elegant Bi2S3/CdS nanosheet arrays reaches 9.48 mA/cm2 at 1.23 VRHE under an illumination of 100 mW/cm2 from AM 1.5G sun simulator, which is more than ten times higher than that of the pure Bi2S3 nanosheet arrays and the photocurrent density does not decline obviously after 4 h of continuous operation. Ultimately, a rational mechanism is proposed to elucidate the high performance and excellent stability of Bi2S3/CdS nanosheet arrays for photoelectrochemical cells.

Graphic Abstract

To obtain nanosheet arrays: Arrays of Bi2S3/CdS nanosheets on a FTO substrate are synthesized by electrodeposition, ion exchange and hydrothermal process. The Bi2S3/CdS nanosheet photoanodes show better photoactive and photostability compared to bare Bi2S3 (CdS) nanosheets for photoelectrochemical splitting of water.

Keywords

Bi2S3/CdS nanosheet arrays photoanode hydrogen evolution photoelectrochemical heterostructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research is supported by the National Natural Science Foundation of China (No. 51674194, 51074122) and the financial support from Beijing National Laboratory for Molecular Sciences (BNLMS201825) and the ACS Key Laboratory of Colloids, Interfaces and Thermodynamics. We also thank Prof. Kaiqiang Liu and Mr. Xiangyang Yan (School of Chemistry and Chemical Engineering, Shaanxi Normal University) for their technical support in TEM and XPS measurements.

Supplementary material

11664_2019_7447_MOESM1_ESM.pdf (930 kb)
Supplementary material 1 (PDF 929 kb)

References

  1. 1.
    K.N. Ferreira, T.M. Iverson, M. Karim, B. James, and I. So, Science 303, 1831 (2004).CrossRefGoogle Scholar
  2. 2.
    L. Gibson, E.N. Wilman, and W.F. Laurance, Trends Ecol. Evol. 32, 12 (2017).CrossRefGoogle Scholar
  3. 3.
    H. Wang, Y. Yang, and L. Guo, Adv. Energy Mater 7, 1601709 (2016).CrossRefGoogle Scholar
  4. 4.
    S.Z. Wei, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Norskov, and T.F. Jaramillo, Science 355, eaad4998 (2017).CrossRefGoogle Scholar
  5. 5.
    M. Zhu, P. Chen, and M. Liu, ACS Nano 5, 4529 (2011).CrossRefGoogle Scholar
  6. 6.
    Y. Yin, N. Ma, J. Xue, G. Wang, S. Liu, H. Li, and P. Guo, Langmuir 35, 787 (2019).CrossRefGoogle Scholar
  7. 7.
    Y. Li, M. Yang, Z. Tian, N. Luo, Y. Li, H. Zhang, A. Zhou, and S. Xiong, Front. Chem. 7, 334 (2019).CrossRefGoogle Scholar
  8. 8.
    H. Wang, P. Hu, J. Yang, G. Gong, L. Guo, and X. Chen, Adv. Mater. 27, 2348 (2015).CrossRefGoogle Scholar
  9. 9.
    C. Pan, X. Jing, Y. Wang, L. Di, and Y. Zhu, Adv. Funct. Mater. 22, 1518 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. Li, J. Feng, H. Li, X. Wei, R. Wang, and A. Zhou, Int. J. Hydrog. Energ. 41, 4096 (2016).CrossRefGoogle Scholar
  11. 11.
    P. Zhang, J. Zhang, and J. Gong, Chem. Soc. Rev. 43, 4395 (2014).CrossRefGoogle Scholar
  12. 12.
    A. Fujishima and K. Honda, Nature 238, 37 (1972).CrossRefGoogle Scholar
  13. 13.
    X. Chen, S. Shen, L. Guo, and S. Samuel, Chem. Rev. 110, 6503 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Marandi, E. Rahmani, and F. Ahangarani, J. Electron. Mater. 46, 6769 (2017).CrossRefGoogle Scholar
  15. 15.
    P. Chen, Z. Liu, X. Geng, J. Wang, M. Zhang, and J. Liu, J. Electron. Mater. 46, 1 (2016).Google Scholar
  16. 16.
    P.K. Sarswat, N. Deka, S. Rao, L. Free, and G. Kumar, J. Electron. Mater. 46, 1 (2017).CrossRefGoogle Scholar
  17. 17.
    D.J. Desale, S. Shaikh, A. Ghosh, R. Birajadar, F. Siddiqui, A. Ghule, and R.B. Sharma, Compos. Part B 43, 1095 (2012).CrossRefGoogle Scholar
  18. 18.
    S. Misra and H.C. Padhi, J. Appl. Phys. 75, 4576 (1994).CrossRefGoogle Scholar
  19. 19.
    T. Cao, Y. Li, C. Wang, Z. Zhang, and Y. Liu, J. Mater. Chem. 21, 6922 (2011).CrossRefGoogle Scholar
  20. 20.
    K. Lv, Q. Xiang, and J Yu, Appl. Catal. B Environ. 104, 275 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Zhao, Z. Dai, X. Xu, J. Pan, and J. Hu, ACS Appl. Mater. Inter. 10, 23074 (2018).CrossRefGoogle Scholar
  22. 22.
    Y. Shi, Y. Li, X. Wei, J. Feng, and A. Zhou, J. Electron. Mater. 46, 6878 (2017).CrossRefGoogle Scholar
  23. 23.
    H. Li, Y. Gao, Y. Zhou, F. Fan, Q. Han, Q. Xu, X. Wang, M. Xiao, C. Li, and Z. Zou, Nano Lett. 16, 5547 (2016).CrossRefGoogle Scholar
  24. 24.
    Y. Li, R. Wang, H. Li, X. Wei, J. Feng, K. Liu, Y. Dang, and A. Zhou, J. Phys. Chem. C 119, 20283 (2015).CrossRefGoogle Scholar
  25. 25.
    Y. Li, X. Wei, B. Zhu, H. Wang, Y. Tang, and T.C. Sum, Nanoscale 8, 11284 (2016).CrossRefGoogle Scholar
  26. 26.
    J.R. Maiolo, B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, H.A. Atwater, and N.S. Lewis, J. Am. Chem. Soc. 129, 12346 (2007).CrossRefGoogle Scholar
  27. 27.
    Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2010).CrossRefGoogle Scholar
  28. 28.
    C. Liu, Y. Yang, W. Li, J. Li, Y. Li, and Q. Chen, Int. J. Hydrog. Energ. 41, 5878 (2016).CrossRefGoogle Scholar
  29. 29.
    L. Li, N. Sun, Y. Huang, Q. Yao, N. Zhao, J. Gao, M. Li, H. Zhou, and L. Qi, Adv. Funct. Mater. 18, 1194 (2010).CrossRefGoogle Scholar
  30. 30.
    R. Xing, D. Li, C. An, L. Zhang, Q. Li, and S. Liu, J. Nanosci. Nanotechnol. 12, 8029 (2012).CrossRefGoogle Scholar
  31. 31.
    A.A. Tahir, M.A. Ehsan, M. Mazhar, K.G. Wijayantha, M. Zeller, and A.D. Hunter, Chem. Mater. 22, 5084 (2010).CrossRefGoogle Scholar
  32. 32.
    C. Ludovico, M. Reihaneh, P. Brien, M. Andrea, P. Srebri, N. Kherani, and G. Ozin, Angew. Chem. 39, 20070534 (2010).Google Scholar
  33. 33.
    X. Wang, J. Xie, and C. Li, J. Mater. Chem. A 3, 1235 (2014).CrossRefGoogle Scholar
  34. 34.
    J. Huang, H. Zhang, X. Zhou, and X. Zhong, Mater. Chem. Phys. 138, 755 (2013).CrossRefGoogle Scholar
  35. 35.
    B. Weng, X. Zhang, N. Zhang, Z.R. Tang, and Y.J. Xu, Langmuir 31, 4314 (2015).CrossRefGoogle Scholar
  36. 36.
    S. Luo, F. Qin, Y. Ming, H. Zhao, Y. Liu, and R. Chen, J. Hazard. Mater. 340, 253 (2017).CrossRefGoogle Scholar
  37. 37.
    L. Hao, G. Chen, Y. Yu, Y. Zhou, Z. Han, and Y. Liu, Int. J. Hydrog. Energ. 39, 14479 (2014).CrossRefGoogle Scholar
  38. 38.
    A. Jana, P. Hazra, M. Hazra, and J. Datta, Mater. Chem. Phys. 183, 173 (2016).CrossRefGoogle Scholar
  39. 39.
    P. Li, X. Zhang, C. Hou, Y. Chen, and T. He, Appl. Catal. B Environ. 238, 656 (2018).CrossRefGoogle Scholar
  40. 40.
    H. He, S.P. Berglund, P. Xiao, W.D. Chemelewski, Y. Zhang, and C.B. Mullins, J. Mater. Chem. A. 1, 12826 (2013).CrossRefGoogle Scholar
  41. 41.
    A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, and I.A. Ibrahim, Appl. Catal. B Environ. 213, 18 (2017).CrossRefGoogle Scholar
  42. 42.
    S.U. Shaikh, F.Y. Siddiqui, F. Singh, P.K. Kulriya, D.M. Phase, and R. Sharma, Mater. Chem. Phys. 169, 6 (2016).CrossRefGoogle Scholar
  43. 43.
    W.T. Sun, Y. Yu, H.Y. Pan, X.F. Gao, Q. Chen, and L.M. Peng, J. Am. Chem. Soc. 130, 11240 (2009).Google Scholar
  44. 44.
    A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, and P. Yang, Nano Lett. 15, 4096 (2015).CrossRefGoogle Scholar
  45. 45.
    Y. Li, X. Wei, H. Li, R. Wang, J. Feng, H. Yun, and A. Zhou, RSC Adv. 5, 14074 (2015).CrossRefGoogle Scholar
  46. 46.
    Y. Yan, Z. Zhou, W. Li, Y. Zhu, Y. Cheng, F. Zhao, and J. Zhou, RSC Adv. 4, 38558 (2014).CrossRefGoogle Scholar
  47. 47.
    I.M. Kobasa and G.P. Tarasenko, Theor. Exp. Chem. 38, 255 (2002).CrossRefGoogle Scholar
  48. 48.
    K.T. Woo and K.S. Choi, Science 343, 990 (2014).CrossRefGoogle Scholar
  49. 49.
    F. Zhen, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen, and C. Yuan, J. Phys. Chem. C 115, 281 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXi’an University of Science and TechnologyXi’anChina
  2. 2.Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials ScienceNorthwest UniversityXi’anChina

Personalised recommendations