Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6437–6445 | Cite as

ZnO Nanoparticles, Nanorods, Hexagonal Plates and Nanosheets Produced by Polyol Route and the Effect of Surface Passivation by Acetate Molecules on Optical Properties

  • Eduardo F. Barbosa
  • Jaqueline A. Coelho
  • Edna R. Spada
  • Daniel R. B. Amorim
  • Livia M. C. Souza
  • Neusmar J. A. Cordeiro
  • Henrique de Santana
  • José L. Duarte
  • João B. Floriano
  • Wido H. Schreiner
  • Andreia G. Macedo
  • Roberto M. Faria
  • Paula C. RodriguesEmail author
Article
  • 37 Downloads

Abstract

We carried out synthesis of shape-controlled ZnO nanoparticles following a polyol route using either ethylene glycol (EG) or polyethylene glycol (PEG) as solvent, which exhibited wurtzite structures as identified by XRD patterns. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses of the synthesized structures showed that the size and the shape are strongly dependent on the reaction medium, resulting in nanospheres, rods, hexagonal plates or sheets, which were characterized by different spectroscopy techniques such as: Raman scattering, x-ray photoelectron spectroscopy (XPS), UV–Vis and photoluminescence (PL). The Raman analysis showed that the resulting surface is passivated with acetate molecules and also monitored the presence of superficial defects, whose spectroscopic patterns (Raman spectroscopy) indicated that the passivation with acetate molecules reduces the number of defects, such as oxygen vacancies. This result was confirmed by XPS analyses that identified chemisorbed oxygen species onto the oxide surface and an oxygen-deficient component in the sample prepared as reference, without a passivation with EG or PEG. Photoluminescence results showed that the passivation, size and shape of the particles influenced the optical features, mainly at the emission at the green region of spectrum that has been related with surface defects. This green emission is favoured at the ZnO sample prepared without passivation and with large amount of defects. Current–voltage characteristic (JV) of an inverted organic solar cell showed the potential application of these ZnO nanostructures as electron transport material in organic photovoltaic devices.

Keywords

Optical properties organic solar cell polyol route ZnO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors gratefully acknowledge the LAMAQ and CMCM (UTFPR), ESPEC-CMLP (UEL) and the National Institute for Science and Technology on Organic Electronics (INEO). A.G.M. acknowledges the financial support from Serrapilheira Institute (Grant No. Serra-1709-17054)

References

  1. 1.
    E. Fortunato, A. Gonçalves, A. Pimentel, P. Barquinha, G. Gonçalves, L. Pereira, I. Ferreira, and R. Martins, Appl. Phys. A Mater. Sci. Process. 96, 197 (2009).CrossRefGoogle Scholar
  2. 2.
    J. Yang, K. Liu, Z. Cheng, P. Jing, Q. Ai, X. Chen, B. Li, Z. Zhang, L. Zhang, H. Zhao, and D. Shen, ACS Appl. Mater. Interfaces 10, 34744 (2018).CrossRefGoogle Scholar
  3. 3.
    K. Wang, L. Bießmann, M. Schwartzkopf, S.V. Roth, and P. Müller-Buschbaum, ACS Appl. Mater. Interfaces 10, 20569 (2018).CrossRefGoogle Scholar
  4. 4.
    S. Jung, J. Lee, J. Seo, U. Kim, Y. Choi, and H. Park, Nano Lett. 18, 1337 (2018).CrossRefGoogle Scholar
  5. 5.
    H. Li, M. Xia, G. Dai, H. Yu, Q. Zhang, A. Pan, T. Wang, Y. Wang, and B. Zou, J. Phys. Chem. C 112, 17546 (2008).CrossRefGoogle Scholar
  6. 6.
    L. Zhou, H.Y. Xiang, Y.F. Zhu, Q.D. Ou, Q.K. Wang, J. Du, R. Hu, X.B. Huang, and J.X. Tang, ACS Appl. Mater. Interfaces 11, 9251 (2019).CrossRefGoogle Scholar
  7. 7.
    M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, and L.A. Patil, Sens. Actuators B Chem. 115, 128 (2006).CrossRefGoogle Scholar
  8. 8.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990).CrossRefGoogle Scholar
  9. 9.
    F. Giovannelli, C. Chen, P. Díaz-Chao, E. Guilmeau, and F. Delorme, J. Eur. Ceram. Soc. 38, 5015 (2018).CrossRefGoogle Scholar
  10. 10.
    G. Gonçalves, A. Pimentel, E. Fortunato, R. Martins, E.L. Queiroz, R.F. Bianchi, and R.M. Faria, J. Non Cryst. Solids 352, 1444 (2006).CrossRefGoogle Scholar
  11. 11.
    Z.L. Wang, ACS Nano 2, 1987 (2008).CrossRefGoogle Scholar
  12. 12.
    P. Grey, D. Gaspar, I. Cunha, R. Barras, J.T. Carvalho, J.R. Ribas, E. Fortunato, R. Martins, and L. Pereira, Adv. Mater. Technol. 2, 1700009 (2017).CrossRefGoogle Scholar
  13. 13.
    P. Ruankham, S. Yoshikawa, and T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516 (2013).CrossRefGoogle Scholar
  14. 14.
    Z. Wu, T. Song, Z. Xia, H. Wei, and B. Sun, Nanotechnology 24, 484012 (2013).CrossRefGoogle Scholar
  15. 15.
    R. Søndergaard, M. Helgesen, M. Jørgensen, and F.C. Krebs, Adv. Energy Mater. 1, 68 (2011).CrossRefGoogle Scholar
  16. 16.
    C.H. Luong, S. Kim, S. Surabhi, T.S. Vo, K.M. Lee, S.G. Yoon, J.H. Jeong, J.H. Choi, and J.R. Jeong, Appl. Surf. Sci. 351, 487 (2015).CrossRefGoogle Scholar
  17. 17.
    A. Kolodziejczak-Radzimska and T. Jesionowski, Materials (Basel) 7, 2833 (2014).CrossRefGoogle Scholar
  18. 18.
    X. Wen, W. Wu, Y. Ding, and Z.L. Wang, J. Mater. Chem. 22, 9469 (2012).CrossRefGoogle Scholar
  19. 19.
    S. Nezhadesm-kohardafchahi, S. Farjami-shayesteh, Y. Badali, Ş. Alt, Y. Azizian-kalandaragh, A. Khodayari, and M. Behboudnia, Mater. Sci. Semicond. Process. 12, 142 (2018).Google Scholar
  20. 20.
    Y. Azizian-kalandaragh, A. Khodayari, and M. Behboudnia, Mater. Sci. Semicond. Process. 12, 142 (2009).CrossRefGoogle Scholar
  21. 21.
    H. Dong, Y.C. Chen, and C. Feldmann, Green Chem. 17, 4107 (2015).CrossRefGoogle Scholar
  22. 22.
    C. Feldmann, Solid State Sci. 7, 868 (2005).CrossRefGoogle Scholar
  23. 23.
    F. Fievet, J.P. Lagier, B. Blin, B. Beaudoin, and M. Figlarz, Solid State Ionics 32–33, 198 (1989).CrossRefGoogle Scholar
  24. 24.
    M. Hosni, Y. Kusumawati, S. Farhat, N. Jouini, and T. Pauporté, J. Phys. Chem. C 118, 16791 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Inamdar, N. Beedri, K. Kodam, A. Shaikh, and H. Pathan, in Macromol. Symp. (2015), pp. 52–57.Google Scholar
  26. 26.
    S. Kumar, D. Panigrahi, and A. Dhar, Org. Electron. Phys. Mater. Appl. 38, 1 (2016).Google Scholar
  27. 27.
    B.W. Chieng and Y.Y. Loo, Mater. Lett. 73, 78 (2012).CrossRefGoogle Scholar
  28. 28.
    D.J. Coutinho and R.M. Faria, Appl. Phys. Lett. 103, 223304 (2013).CrossRefGoogle Scholar
  29. 29.
    T. Hu, F. Li, K. Yuan, and Y. Chen, ACS Appl. Mater. Interfaces 5, 5763 (2013).CrossRefGoogle Scholar
  30. 30.
    S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, and J. Moon, Superlattices Microstruct. 43, 330 (2008).CrossRefGoogle Scholar
  31. 31.
    X. Liu, M. Afzaal, K. Ramasamy, P. O’Brien, and J. Akhtar, J. Am. Chem. Soc. 131, 15106 (2009).CrossRefGoogle Scholar
  32. 32.
    R. Boppella, K. Anjaneyulu, P. Basak, and S.V. Manorama, J. Phys. Chem. C 117, 4597 (2013).CrossRefGoogle Scholar
  33. 33.
    R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, and M.J. Callahan, Phys. Rev. B 75, 165202 (2007).CrossRefGoogle Scholar
  34. 34.
    S. Ben Yahia, L. Znaidi, A. Kanaev, and J.P. Petitet, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 71, 1234 (2008).CrossRefGoogle Scholar
  35. 35.
    R.D. Yang, S. Tripathy, Y. Li, and H.J. Sue, Chem. Phys. Lett. 411, 150 (2005).CrossRefGoogle Scholar
  36. 36.
    R.L. Frost and J.T. Kloprogge, J. Mol. Struct. 526, 131 (2000).CrossRefGoogle Scholar
  37. 37.
    G. Xiong, U. Pal, and J.G. Serrano, J. Appl. Phys. 101, 24317 (2007).CrossRefGoogle Scholar
  38. 38.
    Y. Sun, J.H. Seo, C.J. Takacs, J. Seifter, and A.J. Heeger, Adv. Mater. 23, 1679 (2011).CrossRefGoogle Scholar
  39. 39.
    F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, Nanoscale 6, 10224 (2014).CrossRefGoogle Scholar
  40. 40.
    X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang, and R. Liu, Sci. Rep. 4, 4596 (2014).CrossRefGoogle Scholar
  41. 41.
    K. Kotsis and V. Staemmler, Phys. Chem. Chem. Phys. 8, 1490 (2006).CrossRefGoogle Scholar
  42. 42.
    J.H. Lin, R.A. Patil, R.S. Devan, Z.A. Liu, Y.P. Wang, C.H. Ho, Y. Liou, and Y.R. Ma, Sci. Rep. 4, 1 (2014).Google Scholar
  43. 43.
    S. Talam, S.R. Karumuri, and N. Gunnam, ISRN Nanotechnol. 2012, 1 (2012).CrossRefGoogle Scholar
  44. 44.
    A.K. Zak, M.E. Abrishami, W.H.A. Majid, R. Yousefi, and S.M. Hosseini, Ceram. Int. 37, 393 (2011).CrossRefGoogle Scholar
  45. 45.
    M.H. Farooq, I. Aslam, H.S. Anam, M. Tanveer, Z. Ali, U. Ghani, and R. Boddula, Mater. Sci. Energy Technol. 2, 181 (2019).Google Scholar
  46. 46.
    K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, and W.F. Hsieh, Chem. Phys. Lett. 409, 208 (2005).CrossRefGoogle Scholar
  47. 47.
    A. Sharma, B.P. Singh, S. Dhar, A. Gondorf, and M. Spasova, Surf. Sci. 606, L13 (2012).CrossRefGoogle Scholar
  48. 48.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, Adv. Mater. 13, 113 (2001).CrossRefGoogle Scholar
  49. 49.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, and W. Cai, Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
  50. 50.
    G. Williams and P.V. Kamat, Langmuir 25, 13869 (2009).CrossRefGoogle Scholar
  51. 51.
    A.M.S. Salem, S.M. El-Sheikh, F.A. Harraz, S. Ebrahim, M. Soliman, H.S. Hafez, I.A. Ibrahim, and M.S.A. Abdel-Mottaleb, Appl. Surf. Sci. 425, 156 (2017).CrossRefGoogle Scholar
  52. 52.
    B.Y. Finck and B.J. Schwartz, Appl. Phys. Lett. 103, 053306 (2013).CrossRefGoogle Scholar
  53. 53.
    B. Lechêne, J. Leroy, O. Tosoni, R. De Bettignies, and G. Perrier, J. Phys. Chem. C 118, 20132 (2014).CrossRefGoogle Scholar
  54. 54.
    A. Manor, E.A. Katz, T. Tromholt, and F.C. Krebs, Sol. Energy Mater. Sol. Cells 98, 491 (2012).CrossRefGoogle Scholar
  55. 55.
    D.C. Iza, D. Muñoz-Rojas, Q. Jia, B. Swartzentruber, and J.L. MacManus-Driscoll, Nanoscale Res. Lett. 7, 1 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Eduardo F. Barbosa
    • 1
  • Jaqueline A. Coelho
    • 1
  • Edna R. Spada
    • 2
  • Daniel R. B. Amorim
    • 2
  • Livia M. C. Souza
    • 2
  • Neusmar J. A. Cordeiro
    • 3
  • Henrique de Santana
    • 4
  • José L. Duarte
    • 3
  • João B. Floriano
    • 1
  • Wido H. Schreiner
    • 5
  • Andreia G. Macedo
    • 6
  • Roberto M. Faria
    • 2
  • Paula C. Rodrigues
    • 1
    Email author
  1. 1.Departamento Acadêmico de Química e BiologiaUniversidade Tecnológica Federal do ParanáCuritibaBrazil
  2. 2.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  3. 3.Departamento de FísicaUniversidade Estadual de LondrinaLondrinaBrazil
  4. 4.Departamento de QuímicaUniversidade Estadual de LondrinaLondrinaBrazil
  5. 5.Departamento de FísicaUniversidade Federal do ParanáCuritibaBrazil
  6. 6.Departamento Acadêmico de FísicaUniversidade Tecnológica Federal do ParanáCuritibaBrazil

Personalised recommendations