Journal of Electronic Materials

, Volume 48, Issue 10, pp 6546–6552 | Cite as

Fabrication of Highly Conductive Carbon-Doped Cadmium Oxides Based on a Simple Annealing Method

  • Yasir Ali
  • Seungjun LeeEmail author


A highly conductive carbon-doped cadmium oxide (CdO) has been fabricated by a catalyst free, compatible and low-cost one-step technique using an annealing method. In the process, the cadmium acetate was used directly as a precursor, and no further assistance from chemicals, multiple steps or instruments was needed. The morphology and phase identification were confirmed by x-ray diffraction, x-ray photoelectron and Raman spectroscopy analyses. From the analyses, it was confirmed that the carbons are inserted at the vacant oxygen sites of the prepared CdO, and the Cd–C linking bridges play a significant role in increasing the electrical conductivity. The thin film prepared by the fabricated CdO showed an excellent electrical conductivity of 858.51 S/cm, suggesting that a highly conductive CdO material fabricated by a simple annealing method can serve as a good electrical conductor material. The thin film fabricated from the carbon-doped CdO material can be used for electrical applications such as solar cells, photo transistors, photo diodes and super capacitors.


Cadmium oxide one-step synthesis electrical conductivity carbon doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Basic Science Research Program, through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2018R1D1A1B07045257) and by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of Korea (No. 20194030202320).


  1. 1.
    R.M. Navarro, F. del Valle, and J.L.G. Fierro, Int. J. Hydrogen Energy 33, 4265 (2008).CrossRefGoogle Scholar
  2. 2.
    C.H. Champness and C.H. Chan, Sol. Energy Mater. Sol. Cells 37, 75 (1995).CrossRefGoogle Scholar
  3. 3.
    L.M. Su, N. Grote, and F. Schmitt, Electron. Lett. 20, 716 (1984).CrossRefGoogle Scholar
  4. 4.
    R. Kondo, H. Okimura, and Y. Sakai, Jpn. J. Appl. Phys. 10, 1547 (1971).CrossRefGoogle Scholar
  5. 5.
    F.A. Benko and F.P. Koffyberg, Solid State Commun. 57, 901 (1986).CrossRefGoogle Scholar
  6. 6.
    M. Ocampo, A.M. Fernandez, and P.J. Sebastian, Semicond. Sci. Technol. 8, 750 (1993).CrossRefGoogle Scholar
  7. 7.
    T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, and G. Neri, Nanotechnology 22, 325501 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Kumar, B. Ahmed, A.K. Ojha, J. Das, and A. Kumar, Mater. Res. Bull. 90, 224 (2017).CrossRefGoogle Scholar
  9. 9.
    R.R. Salunkhe and C.D. Lokhande, Sensors Actuators B Chem. 129, 345 (2008).CrossRefGoogle Scholar
  10. 10.
    Z. Yang, W. Zhong, Y. Yin, X. Du, Y. Deng, C. Au, and Y. Du, Nanoscale Res. Lett. 5, 961 (2010).CrossRefGoogle Scholar
  11. 11.
    T. Ghoshal, S. Biswas, P.M.G. Nambissan, G. Majumdar, and S.K. De, Cryst. Growth Des. 9, 1287 (2009).CrossRefGoogle Scholar
  12. 12.
    M. Ghosh and C.N.R. Rao, Chem. Phys. Lett. 393, 493 (2004).CrossRefGoogle Scholar
  13. 13.
    K. Kaviyarasu, E. Manikandan, J. Kennedy, and M. Jayachandran, Mater. Lett. 120, 243 (2014).CrossRefGoogle Scholar
  14. 14.
    D. Carballeda-Galicia, R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, G. Torres-Delgado, and C. Zúñiga-Romero, Thin Solid Films 371, 105 (2000).CrossRefGoogle Scholar
  15. 15.
    K. Sankarasubramanian, P. Soundarrajan, T. Logu, K. Sethuraman, and K. Ramamurthi, New J. Chem. 42, 1457 (2018).CrossRefGoogle Scholar
  16. 16.
    X. Li, D.L. Young, H. Moutinho, Y. Yan, C. Narayanswamy, T.A. Gessert, and T.J. Coutts, Electrochem. Solid-State Lett. 4, C43 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Ocampo, P.J. Sebastian, and J. Campos, Phys. Status Solidi 143, K29 (1994).CrossRefGoogle Scholar
  18. 18.
    L.L. Pan, K.K. Meng, G.Y. Li, H.M. Sun, and J.S. Lian, RSC Adv. 4, 52451 (2014).CrossRefGoogle Scholar
  19. 19.
    A. Tadjarodi and M. Imani, Mater. Lett. 65, 1025 (2011).CrossRefGoogle Scholar
  20. 20.
    S.H. Tolbert and A.P. Alivisatos, J. Chem. Phys. 102, 4642 (1995).CrossRefGoogle Scholar
  21. 21.
    Q. Ma, X. Wen, W. Ma, X. Dong, J. Wang, W. Yu, and G. Liu, in 2015 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 186–189.Google Scholar
  22. 22.
    X. Liu, C. Li, S. Han, J. Han, and C. Zhou, Appl. Phys. Lett. 82, 1950 (2003).CrossRefGoogle Scholar
  23. 23.
    J. Feng, S. Xiong, Y. Qian, and L. Yin, Electrochim. Acta 129, 107 (2014).CrossRefGoogle Scholar
  24. 24.
    H.H. Afify, N.M. Ahmed, M.Y. Tadros, and F.M. Ibrahim, J. Electr. Syst. Inf. Technol. 1, 119 (2014).Google Scholar
  25. 25.
    A.K. Srivastava, S. Pandey, K.N. Sood, S.K. Halder, and R. Kishore, Mater. Lett. 62, 727 (2008).CrossRefGoogle Scholar
  26. 26.
    J.H. Kim, Y.C. Hong, and H.S. Uhm, Jpn. J. Appl. Phys. 46, 4351 (2007).CrossRefGoogle Scholar
  27. 27.
    I.S. Yahia, G.F. Salem, M.S. Abd El-sadek, and F. Yakuphanoglu, Superlattices Microstruct. 64, 178 (2013).CrossRefGoogle Scholar
  28. 28.
    N. Koparanova, Z. Zlatev, D. Genchev, and G. Popovich, J. Mater. Sci. 29, 103 (1994).CrossRefGoogle Scholar
  29. 29.
    M. Yan, M. Lane, C.R. Kannewurf, and R.P.H. Chang, Appl. Phys. Lett. 78, 2342 (2001).CrossRefGoogle Scholar
  30. 30.
    S. Balamurugan, A.R. Balu, K. Usharani, M. Suganya, S. Anitha, D. Prabha, and S. Ilangovan, Pac. Sci. Rev. A Nat. Sci. Eng. 18, 228 (2016).Google Scholar
  31. 31.
    H. Khallaf, C.-T. Chen, L.-B. Chang, O. Lupan, A. Dutta, H. Heinrich, A. Shenouda, and L. Chow, Appl. Surf. Sci. 257, 9237 (2011).CrossRefGoogle Scholar
  32. 32.
    S. Asgharzadehahmadi, A.A. Abdul Raman, R. Parthasarathy, and B. Sajjadi, Renew. Sustain. Energy Rev. 63, 302 (2016).CrossRefGoogle Scholar
  33. 33.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, J. Phys. Chem. Solids 112, 106 (2018).CrossRefGoogle Scholar
  34. 34.
    V.S. Bagal, G.P. Patil, A.B. Deore, S.R. Suryawanshi, D.J. Late, M.A. More, and P.G. Chavan, RSC Adv. 6, 41261 (2016).CrossRefGoogle Scholar
  35. 35.
    Q. Gu, H. Zhuang, J. Long, X. An, H. Lin, H. Lin, and X. Wang, Int. J. Photoenergy 2012, 1 (2012).CrossRefGoogle Scholar
  36. 36.
    S. Sönmezoğlu, Mater. Technol. 29, 3 (2014).CrossRefGoogle Scholar
  37. 37.
    M. Hilal and J.I. Han, Sol. Energy 167, 24 (2018).CrossRefGoogle Scholar
  38. 38.
    T. Singh, D.K. Pandya, and R. Singh, Mater. Sci. Eng., B 176, 945 (2011).CrossRefGoogle Scholar
  39. 39.
    M. Hilal and J.I. Han, J. Mater. Sci.: Mater. Electron. 30, 6187 (2019).Google Scholar
  40. 40.
    J.-C. Dupin, D. Gonbeau, P. Vinatier, and A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319 (2000).CrossRefGoogle Scholar
  41. 41.
    L.F.J. Piper, P.H. Jefferson, T.D. Veal, C.F. McConville, and J. Zuñiga-Pérez, Superlattices Microstruct. 42, 197 (2007).CrossRefGoogle Scholar
  42. 42.
    S. Rajappan Achary, S. Agouram, J.F. Sánchez-Royo, M.C. Martínez-Tomás, and V. Muñoz-Sanjosé, RSC Adv. 4, 23137 (2014).CrossRefGoogle Scholar
  43. 43.
    M. Hilal and J.I. Han, Sol. Energy 174, 743 (2018).CrossRefGoogle Scholar
  44. 44.
    M. Hilal and J.I. Han, Sol. Energy 29, 24 (2018).CrossRefGoogle Scholar
  45. 45.
    M. Hilal and J.I. Han, J. Mater. Sci.: Mater. Electron. 29, 13561 (2018).Google Scholar
  46. 46.
    M. Hilal and J.I. Han, Appl. Nanosci. 8, 1325 (2018).CrossRefGoogle Scholar
  47. 47.
    R. Ferro and J. Rodríguez, Sol. Energy Mater. Sol. Cells 64, 363 (2000).CrossRefGoogle Scholar
  48. 48.
    Y.S. Ocak, D. Batibay, and S. Baturay, J. Mater. Sci.: Mater. Electron. 29, 17425 (2018).Google Scholar
  49. 49.
    B. Saha, S. Das, and K.K. Chattopadhyay, Sol. Energy Mater. Sol. Cells 91, 1692 (2007).CrossRefGoogle Scholar
  50. 50.
    T.K. Lakshmanan, J. Electrochem. Soc. 110, 548 (1963).CrossRefGoogle Scholar
  51. 51.
    N. Ueda, H. Maeda, H. Hosono, and H. Kawazoe, J. Appl. Phys. 84, 6174 (1998).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical, Robotics, and Energy EngineeringDongguk UniversitySeoulSouth Korea

Personalised recommendations