Journal of Electronic Materials

, Volume 48, Issue 10, pp 6327–6334 | Cite as

Electronic Properties and Photovoltaic Functionality of Zn-Doped Orthorhombic CH3NH3PbI3: A GGA+vdW Study

  • Xiaoping Han
  • Noureddine Amrane
  • Adel Najar
  • N. Qamhieh
  • Zongsheng Zhang
  • Maamar BenkraoudaEmail author


Attempts have been made to explore the electronic properties and photovoltaic functionality of Zn-doped orthorhombic CH3NH3PbI3 using the generalized gradient approximation method with van der Waals correction (GGA+vdW). Results show that Zn doping effectively decreases the band gap of orthorhombic CH3NH3PbI3, extending the optical absorption into the near-infrared region of solar irradiance. Simultaneously, the incorporation of Zn substantially increases the electron mobility of CH3NH3PbI3, which is expected to assist the dissociation of electron–hole pairs to effectively reduce the probability for their recombination, leading to improved optical absorption. The combined effects of Zn doping on band gap and carrier mobility significantly enhance the photovoltaic functionality of orthorhombic CH3NH3PbI3. The detailed calculation of formation energy for Zn substitution reveals a high favourability to form such doping in orthorhombic CH3NH3PbI3. The outcome of this work offers great promise for widening practical applications of CH3NH3PbI3 for photovoltaic materials or devices.


Orthorhombic CH3NH3PbI3 Zn doping DFT calculation electronic properties photovoltaic functionality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


This work was supported by United Arab Emirates University Program for Advanced Research (Grant Nos: 31S109 and 31R146) and by Emirates Center for Energy and Environment Research (Grant No. 31R109-Research Center-ECEER-9-2016). Part of computing resource was provided by North University of China through the Key R&D Plans of Shanxi Province (No. 201803D421084).


  1. 1.
    M.A. Green, A. Ho-Baillie, and H.J. Snaith, Nat. Photonics 8, 506 (2014).CrossRefGoogle Scholar
  2. 2.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith, Science 342, 341 (2013).CrossRefGoogle Scholar
  3. 3.
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang, Science 347, 967 (2015).CrossRefGoogle Scholar
  4. 4.
    C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, and L.M. Herz, Adv. Mater. 26, 1584 (2014).CrossRefGoogle Scholar
  5. 5.
    G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Gratzel, S. Mhaisalker, and T.C. Sum, Science 342, 344 (2013).CrossRefGoogle Scholar
  6. 6.
    H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  8. 8.
    N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, and S.I. Seok, Nature 517, 476 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, and M. Gratzel, Energy Environ. Sci. 9, 1989 (2016).CrossRefGoogle Scholar
  10. 10.
    D. Bi, W. Tress, M.I. Dar, P. Gao, J. Luo, C. Renevier, K. Schenk, A. Abate, F. Giordano, J.P.C. Baena, J.D. Decoppet, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, and A. Hagfeldt, Sci. Adv. 2, e1501170 (2016).CrossRefGoogle Scholar
  11. 11.
    X. Li, D. Bi, C. Yi, J.D. Décoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, and M. Gratzel, Science 353, 58 (2016).CrossRefGoogle Scholar
  12. 12.
    J. Even, L. Pedesseau, J.M. Jancu, and C. Katan, J. Phys. Chem. Lett. 4, 2999 (2013).CrossRefGoogle Scholar
  13. 13.
    E. Mosconi, A. Amat, M.K. Nazeeruddin, M. Grätzel, and F. De Angelis, J. Phys. Chem. C 117, 13902 (2013).CrossRefGoogle Scholar
  14. 14.
    W.J. Yin, T. Shi, and Y. Yan, Adv. Mater. 26, 4653 (2014).CrossRefGoogle Scholar
  15. 15.
    A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, and F. De Angelis, Nano Lett. 14, 3608 (2014).CrossRefGoogle Scholar
  16. 16.
    W.J. Yin, T. Shi, and Y. Yan, Appl. Phys. Lett. 104, 063903 (2014).CrossRefGoogle Scholar
  17. 17.
    P. Umari, E. Mosconi, and F. De Angelis, Sci. Rep. 4, 4467 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Filippetti and A. Mattoni, Phys. Rev. B 89, 125203 (2014).CrossRefGoogle Scholar
  19. 19.
    F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis, Nat. Photonics 8, 489 (2014).CrossRefGoogle Scholar
  20. 20.
    N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith, Energy Environ. Sci. 7, 3061 (2014).CrossRefGoogle Scholar
  21. 21.
    J. Navas, A. Sánchez-Coronilla, J.J. Gallardo, N.C. Hernández, J.C. Piñero, R. Alcántara, C. Fernández-Lorenzo, D.M. De los Santos, T. Aguilar, and J. Martín-Calleja, Nanoscale 7, 6216 (2015).CrossRefGoogle Scholar
  22. 22.
    P. Kanhere, S. Chakraborty, C.J. Rupp, R. Ahujabd, and Z. Chen, RSC Adv. 5, 107497 (2015).CrossRefGoogle Scholar
  23. 23.
    C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).CrossRefGoogle Scholar
  24. 24.
    Y. Takahashi, H. Hasegawa, and T. Inabe, J. Solid State Chem. 205, 39 (2013).CrossRefGoogle Scholar
  25. 25.
    Z.S. Almutawah, S.C. Watthage, Z. Song, R.H. Ahangharnejhad, K.K. Subedi, N. Shrestha, A.B. Phillips, Y. Yan, R.J. Ellingson, and M.J. Heben, MRS Adv. 3, 3237 (2018).CrossRefGoogle Scholar
  26. 26.
    T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White, J. Mater. Chem. A 1, 5628 (2013).CrossRefGoogle Scholar
  27. 27.
    W. Geng, L. Zhang, Y.N. Zhang, W.M. Lau, and L.M. Liu, J. Phys. Chem. C 118, 19565 (2014).CrossRefGoogle Scholar
  28. 28.
    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  29. 29.
    G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).CrossRefGoogle Scholar
  30. 30.
    P.E. Blochl, Phys. Rev. B 50, 17593 (1994).CrossRefGoogle Scholar
  31. 31.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  32. 32.
    J.P.P. Ramalho, J.R.B. Gomes, and F. Illas, RSC Adv. 3, 13085 (2013).CrossRefGoogle Scholar
  33. 33.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  34. 34.
    S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, J. Chem. Phys. 132, 154104 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).CrossRefGoogle Scholar
  36. 36.
    A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).CrossRefGoogle Scholar
  37. 37.
    T. Ishihara, J. Lumin. 60, 269 (1994).CrossRefGoogle Scholar
  38. 38.
    G.C. Papavassiliou and I.B. Koutselas, Synth. Met. 71, 1713 (1995).CrossRefGoogle Scholar
  39. 39.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  40. 40.
    E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, and W.T. Yang, J. Am. Chem. Soc. 132, 6498 (2010).CrossRefGoogle Scholar
  41. 41.
    J. Xi, M. Long, L. Tang, D. Wang, and Z. Shuai, Nanoscale 4, 4348 (2012).CrossRefGoogle Scholar
  42. 42.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsUnited Arab Emirates UniversityAl-AinUAE
  2. 2.School of Energy and Power EngineeringNorth University of ChinaTaiyuanChina

Personalised recommendations