Journal of Electronic Materials

, Volume 48, Issue 10, pp 6414–6420 | Cite as

Experimental Comparison of Nonlinear Optical Properties Between Graphene Oxide and Reduced Graphene Oxide

  • Morteza A. SharifEmail author
  • Somayeh Salmani
  • Salman Mohajer
  • M. H. Majles Ara


We delineate a comparative investigation between dispersed graphene oxide (GO) and reduced graphene oxide (RGO) by experimentally measuring their principal/nonlinear optical parameters. We show that the nonlinear refractive index of RGO is larger than that of GO while the nonlinear absorption coefficient of RGO is almost negligible. We particularly organize an experimental plan using GO and RGO inks included in a Mach–Zehnder interferometer and illuminated by a light beam with the wavelength 650 nm. We obtain that the lower threshold input power and more pronounced hysteresis loops are obtained for RGO in comparison to GO. We infer that the contribution of nonlinearity is majorly refractive in RGO rather than absorptive. In return, GO shows a larger absorptive nonlinearity compared to RGO in consequence of the larger nonlinear absorption coefficient. Although GO seems to be appropriate for the saturable absorption-based applications, we deduce that partially reduced GO is more preferred since it can appear as an active electrode providing then an ultrathin electric double layer required for ultrashort pulse generation. Our results indicate that RGO is also suitable for the electro-optical applications like the modulation through which the Fermi energy is to be tuned with a low bias voltage. As well, we propose RGO for all-optical applications like the optical switching for which the highly nonlinear response is required.


Graphene oxide reduced graphene oxide nonlinear Schrödinger equation nonlinear refractive index nonlinear absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    H.A. Hafez, P.L. Lévesque, I. Al-Naib, M.M. Dignam, X. Chai, S. Choubak, P. Desjardins, R. Martel, and T. Ozaki, Appl. Phys. Lett. 107, 25 (2015).CrossRefGoogle Scholar
  2. 2.
    Z.-B. Liu, X. Zhao, X.-L. Zhang, X.-Q. Yan, Y.-P. Wu, Y.-S. Chen, and J.-G. Tian, J. Phys. Chem. Lett. 2, 16 (2011).Google Scholar
  3. 3.
    X. Zhao, Z.-B. Liu, W.-B. Yan, Y. Wu, X.-L. Zhang, Y. Chen, and J.-G. Tian, Appl. Phys. Lett. 98, 12 (2011).Google Scholar
  4. 4.
    N.A. Savostianova and S.A. Mikhailov, Appl. Phys. Lett. 107, 18 (2015).CrossRefGoogle Scholar
  5. 5.
    E. Hendry, P.J. Hale, J. Moger, A.K. Savchenko, and S.A. Mikhailov, Phys. Rev. Lett. 105, 9 (2010).CrossRefGoogle Scholar
  6. 6.
    J.L. Cheng, N. Vermeulen, and J.E. Sipe, Phys. Rev. B 92, 23 (2015).Google Scholar
  7. 7.
    R. Nashed, C. Pan, K. Brenner, and A. Naeemi, IEEE J. Electron. Devices 4, 6 (2016).Google Scholar
  8. 8.
    H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, Opt. Lett. 37, 11 (2012).Google Scholar
  9. 9.
    F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat. Photonics 4, 9 (2010).CrossRefGoogle Scholar
  10. 10.
    N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, J. Phys. Chem. C 117, 13 (2013).CrossRefGoogle Scholar
  11. 11.
    T. Dumitrica, S. Kodambaka, and S. Jun, J. Nanophotonics 6, 1 (2012).Google Scholar
  12. 12.
    R. He, J.R.V. de Aldana, and F. Chen, Opt. Mater. 46, 414 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Koo, J. Park, Y.-W. Song, S. Lee, K. Lee, and J.H. Lee, Opt. Mater. 46, 324 (2015).CrossRefGoogle Scholar
  14. 14.
    A. Locatelli, G.E. Town, and C. De Angelis, IEEE Trans. Terahertz Sci. Technol. 5, 3 (2015).CrossRefGoogle Scholar
  15. 15.
    R.T.M. Ahmad, S.-H. Hong, T.-Z. Shen, and J.-K. Song, Opt. Express 23, 4 (2015).CrossRefGoogle Scholar
  16. 16.
    N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, Nanoscale 8, 5 (2016).CrossRefGoogle Scholar
  17. 17.
    X.-L. Zhang, Z.-B. Liu, X.-C. Li, Q. Ma, X.-D. Chen, J.-G. Tian, Y.-F. Xu, and Y.-S. Chen, Opt. Express 21, 7511 (2013).CrossRefGoogle Scholar
  18. 18.
    M.F. Craciun, S. Russo, M. Yamamoto, and S. Tarucha, Nano Today 6, 1 (2011).CrossRefGoogle Scholar
  19. 19.
    W. Du, E.-P. Li, and R. Hao, IEEE Photonics Technol. Lett. 26, 20 (2014).CrossRefGoogle Scholar
  20. 20.
    Y.-J. Yu, Y. Zhao, S. Ryu, L.E. Brus, K.S. Kim, and P. Kim, Nano Lett. 9, 10 (2009).Google Scholar
  21. 21.
    I. Maeng, S. Lim, S.J. Chae, Y.H. Lee, H. Choi, and J.-H. Son, Nano Lett. 12, 2 (2012).CrossRefGoogle Scholar
  22. 22.
    E.O. Polat and C. Kocabas, Nano Lett. 13, 12 (2013).CrossRefGoogle Scholar
  23. 23.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 9, 3019 (2011).Google Scholar
  24. 24.
    A. Esfandiar, O. Akhavan, and A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21, 29 (2011).CrossRefGoogle Scholar
  25. 25.
    X. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 2 (2009).Google Scholar
  26. 26.
    S. Pei and H.-M. Cheng, Carbon 50, 9 (2012).CrossRefGoogle Scholar
  27. 27.
    O.O. Ekiz, M. Urel, H. Guner, A.K. Mizrak, and A. Dâna, ACS Nano 5, 4 (2011).CrossRefGoogle Scholar
  28. 28.
    R. Ghosh, A. Midya, S. Santra, S.K. Ray, and P.K. Guha, ACS Appl. Mater. Interfaces 5, 15 (2013).Google Scholar
  29. 29.
    X. Mei, X. Meng, and F. Wu, Phys. E Low Dimens. Syst. Nanostruct. 68, 81 (2015).Google Scholar
  30. 30.
    C.K. Chua and M. Pumera, Chem. Commun. 52, 1 (2016).CrossRefGoogle Scholar
  31. 31.
    C. Wong, C. Lai, K. Lee, and S. Hamid, Materials 8, 10 (2015).CrossRefGoogle Scholar
  32. 32.
    M. Lundie, Ž. Šljivančanin, and S. Tomić, J. Mater. Chem. C 3, 29 (2015).CrossRefGoogle Scholar
  33. 33.
    S. Bhattachraya, R. Maiti, A.C. Das, S. Saha, S. Mondal, S.K. Ray, S.N.B. Bhaktha, and P.K. Datta, J. Appl. Phys. 120, 1 (2016).CrossRefGoogle Scholar
  34. 34.
    E. Nossol, A.B.S. Nossol, S.-X. Guo, J. Zhang, X.-Y. Fang, A.J.G. Zarbin, and A.M. Bond, J. Mater. Chem. C 2, 5 (2014).CrossRefGoogle Scholar
  35. 35.
    M.A. Sharif, M.H. Majles Ara, B. Ghafary, S. Salmani, and S. Mohajer, Opt. Mater. 53, 80 (2016).CrossRefGoogle Scholar
  36. 36.
    G. Dovbeshko, O. Fesenko, O. Gnatyuk, A. Rynder, and O. Posudievsky, Nanomaterials Imaging Techniques, Surface Studies, and Applications (New York: Springer, 2013), pp. 25–34.CrossRefGoogle Scholar
  37. 37.
    G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K.M. Abramski, Opt. Express 20, 17 (2012).CrossRefGoogle Scholar
  38. 38.
    H. Shi, C. Wang, Z. Sun, Y. Zhou, K. Jin, S.A.T. Redfern, and G. Yang, Opt. Express 22, 16 (2014).Google Scholar
  39. 39.
    P. Johari and V.B. Shenoy, ACS Nano 5, 7640 (2011).Google Scholar
  40. 40.
    S.A. Mikhailov, Microelectron. J. 40, 4 (2009).CrossRefGoogle Scholar
  41. 41.
    J.L. Cheng, N. Vermeulen, and J.E. Sipe, New J. Phys. 16, 5 (2014).CrossRefGoogle Scholar
  42. 42.
    A.A. Balyakin and N.M. Ryskin, arXiv preprint arXiv:nlin/0503014 (2005).
  43. 43.
    A.A. Balyakin and N.M. Ryskin, Tech. Phys. Lett. 30, 3 (2004).CrossRefGoogle Scholar
  44. 44.
    M.G. Kuzyk and C.W. Dirk, Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials (New York: Marcel Dekker, 1998).Google Scholar
  45. 45.
    S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali, and R.S. Ruoff, Carbon 49, 9 (2011).Google Scholar
  46. 46.
    S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, and W. Song, RSC Adv. 7, 53643 (2017).CrossRefGoogle Scholar
  47. 47.
    M. Faraji, M.A. Sharif, M. Borjkhani, and K. Ashabi, J. Mol. Liq. 269, 485 (2018).CrossRefGoogle Scholar
  48. 48.
    I. Baylam, S. Özharar, N. Kakenov, C. Kocabaş, and A. Sennaroğlu, Femtosecond pulse generation with voltage-controlled graphene saturable absorbers, in: Optical Properties of Graphene, 2017, pp. 389–433.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Optics and Laser Engineering Group, Faculty of Electrical EngineeringUrmia University of TechnologyUrmiaIran
  2. 2.Research Institute of Applied SciencesKharazmi UniversityKarajIran
  3. 3.Photonics LaboratoryKharazmi UniversityTehranIran

Personalised recommendations