Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6025–6029 | Cite as

InGaAs/GaAsSb Type-II Superlattices for Short-Wavelength Infrared Detection

  • Justin EasleyEmail author
  • Christopher R. Martin
  • Martin H. Ettenberg
  • Jamie Phillips
U.S. Workshop on Physics and Chemistry of II-VI Materials 2018
  • 36 Downloads
Part of the following topical collections:
  1. U.S. Workshop on Physics and Chemistry of II-VI Materials 2018

Abstract

Type-II superlattices based on In0.53Ga0.47As/GaAs0.51Sb0.49 (5 nm/5 nm) lattice-matched to InP substrates are investigated for short-wavelength infrared detection. Eight band k.p simulations were utilized to extract information on the electronic band structure, which were in turn used to calculate the optical absorption spectrum of the superlattice. The effective bandgap is calculated to be 0.494 eV, corresponding to a cutoff wavelength of λc = 2.51 μm and optical absorption coefficient of approximately 2000 cm−1 at 2 μm. Quantum efficiency was calculated for a standard InGaAs/T2SL/InGaAs p-i-n device structure, where quantum efficiency exceeding 50% at 2 μm may be achieved. Dark current was calculated considering Auger, radiative, and Shockley–Read–Hall generation-recombination, where Shockley–Read–Hall recombination-generation was found to be the limiting mechanism for a trap density greater than 5 × 1014 cm−3, and radiatively limited performance is predicted for a lower trap density. The estimated dark current density is expected to be comparable to existing HgCdTe technology, while outperforming extended-range InGaAs by more than an order of magnitude.

Keywords

Type II superlattice T2SL SWIR k.p perturbation theory optical absorption Synopsys Sentaurus TCAD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank Dr. Stefan Birner for assistance with the nextnano software.

References

  1. 1.
    C.M. Ciesla, B.N. Murdin, C.R. Pidgeon, R.A. Stradling, C.C. Phillips, M. Livingstone, I. Galbraith, D.A. Jaroszynski, C.J.G.M. Langerak, P.J.P. Tang, and M.J. Pullin, J. Appl. Phys. 80, 2994 (1996).CrossRefGoogle Scholar
  2. 2.
    A. Rogalski, Infrared Phys. Technol. 43, 187 (2002).CrossRefGoogle Scholar
  3. 3.
    J. Rothman, K. Foubert, G. Lasfargues, C. Largeron, I. Zayer, Z. Sodnik, M. Mosberger, and J. Widmer, in Emerging Technologies in Security and Defence II; and Quantum-Physics-based Information Security III (International Society for Optics and Photonics, 2014), p. 92540P.Google Scholar
  4. 4.
    C.L. Tan and H. Mohseni, Nanophotonics 7, 169 (2018).CrossRefGoogle Scholar
  5. 5.
    L. Zhou, Y.G. Zhang, X.Y. Chen, Y. Gu, H.S.B.Y. Li, Y.Y. Cao, and S.P. Xi, J. Phys. Appl. Phys. 47, 085107 (2014).CrossRefGoogle Scholar
  6. 6.
    Y. Arslan, F. Oguz, and C. Besikci, Infrared Phys. Technol. 70, 134 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).CrossRefGoogle Scholar
  8. 8.
    A. Rogalski, Infrared Phys. Technol. 54, 136 (2011).CrossRefGoogle Scholar
  9. 9.
    R. Breiter, M. Benecke, D. Eich, H. Figgemeier, A. Weber, J. Wendler, and A. Sieck, in Infrared Technology and Applications XLII (International Society for Optics and Photonics, 2016), p. 981908.Google Scholar
  10. 10.
    W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).CrossRefGoogle Scholar
  11. 11.
    W.E. Tennant, J. Electron. Mater. 39, 1030 (2010).CrossRefGoogle Scholar
  12. 12.
    Y. Uliel, D. Cohen-Elias, N. Sicron, I. Grimberg, N. Snapi, Y. Paltiel, and M. Katz, Infrared Phys. Technol. 84, 63 (2017).CrossRefGoogle Scholar
  13. 13.
    N. Cohen and O. Aphek, Infrared Technol Appl XLI 9451, 945106 (2015).CrossRefGoogle Scholar
  14. 14.
    H. Inada, K. Machinaga, S. Balasekaran, K. Miura, T. Kawahara, M. Migita, K. Akita, and Y. Iguchi, in Infrared Technology and Applications XLII (International Society for Optics and Photonics, 2016), p. 98190C.Google Scholar
  15. 15.
    C. Jin, J. Chen, Q. Xu, C. Yu, and L. He, Opt. Eng. 56, 057102 (2017).CrossRefGoogle Scholar
  16. 16.
    B. Chen, W. Jiang, J. Yuan, A.L. Holmes, and B.M. Onat, IEEE J. Quantum Electron. 47, 1244 (2011).CrossRefGoogle Scholar
  17. 17.
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
  18. 18.
    B. Chen, W. Sun, J.C. Campbell, and A.L. Holmes, in IEEE Photonic Society 24th Annual Meeting (2011), pp. 35–36.Google Scholar
  19. 19.
    G.A. Umana-Membreno, B. Klein, H. Kala, J. Antoszewski, N. Gautam, M.N. Kutty, E. Plis, S. Krishna, and L. Faraone, Appl. Phys. Lett. 101, 253515 (2012).CrossRefGoogle Scholar
  20. 20.
    D. Benyahia, Ł. Kubiszyn, K. Michalczewski, J. Boguski, A. Kębłowski, P. Martyniuk, J. Piotrowski, and A. Rogalski, Nanoscale Res. Lett. 13, 196 (2018).CrossRefGoogle Scholar
  21. 21.
    M.A. Kinch, J. Electron. Mater. 29, 809 (2000).CrossRefGoogle Scholar
  22. 22.
    M.A. Kinch, Fundamentals of Infrared Detector Materials (Bellingham: SPIE Press, 2007).CrossRefGoogle Scholar
  23. 23.
    H. Wen, B. Pinkie, and E. Bellotti, J. Appl. Phys. 118, 015702 (2015).CrossRefGoogle Scholar
  24. 24.
    J.S. Blakemore, Semiconductor Statistics (Oxford: Pergamon Press, 1962).Google Scholar
  25. 25.
    B.V.V. Zeghbroeck, Principles of Semiconductor Devices and Heterojunctions, 1st ed. (Upper Saddle River: Prentice Hall, 2010).Google Scholar
  26. 26.
    X. Ji, B. Liu, H. Tang, X. Yang, X. Li, H. Gong, B. Shen, P. Han, and F. Yan, AIP Adv. 4, 087135 (2014).CrossRefGoogle Scholar
  27. 27.
    A. Rogalski, P. Martyniuk, and M. Kopytko, Appl. Phys. Rev. 4, 031304 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  2. 2.Applied Physics ProgramUniversity of MichiganAnn ArborUSA
  3. 3.Princeton Infrared Technologies Inc.Monmouth JunctionUSA

Personalised recommendations