Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6319–6326 | Cite as

Exploring the Optical Dynamics in the ITO/As2Se3 Interfaces

  • S. E. Al Garni
  • A. F. QasrawiEmail author
Article
  • 7 Downloads

Abstract

In this work, the effects of indium tin oxide (ITO) substrates on the structural, compositional, optical dielectric and optical conduction properties of arsenic selenide thin films are investigated. The As2Se3 films which are prepared by the thermal deposition technique under vacuum pressure of 10−5 mbar exhibit an induced crystallization process, improved stoichiometry, increased optical transmittance in the visible range of light and increased dielectric response in the infrared range of light upon replacement of glass substrates by ITO. The ITO/As2Se3 interfaces exhibit conduction and valence band offset values of 0.46 eV and 0.91 eV, respectively. The experimental optical conductivity spectra are theoretically reproduced with the help of the Drude–Lorentz approach for optical conduction. In accordance with this approach, owing to the improved crystallinity of the arsenic selenide, the deposition of As2Se3 onto ITO substrates increases the drift mobility value from ∼ 17.6 cm2/Vs to 34.6 cm2/Vs. It also reduces the density of free carriers by one order of magnitude. The ITO/As2Se3/C heterojunction devices which are tested as band filters which may operate in the frequency domain of 0.01–3.0 GHz revealed low pass filter characteristics below 0.35 GHz and band pass filter characteristics in the remaining spectral range.

Keywords

ITO/As2Se3 x-ray diffraction band offsets optical conduction dielectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (D-011-363-1440). The authors, therefore, gratefully acknowledge the DSR technical and financial support.

References

  1. 1.
    Q. Yang, L. Ji, B. Xu, T. Yan, W. Wang, and Zh Lin, Opto-Electr. Eng. 44, 1200 (2017).Google Scholar
  2. 2.
    M.R. Karim, H. Ahmad, S. Ghosh, and B.M.A. Rahman, J. Appl. Phys. 123, 213101 (2018).CrossRefGoogle Scholar
  3. 3.
    T.S. Saini, N.P.T. Hoa, K. Nagasaka, X. Luo, T. H. Tuan, T. Suzuki, and Y. Ohishi, Coherent Mid-infrared Supercontinuum Generation using Rib Waveguide Pumped with Femtosecond Laser, In CLEO: QELS Fundamental Science, pp. JTu2A-143. Optical Society of America, 2018.  https://doi.org/10.1364/cleo_at.2018.jtu2a.143.
  4. 4.
    A. Zarifi, B. Stiller, M. Merklein, Y. Liu, B. Morrison, A. Casas-Bedoya, G. Ren, T.G. Nguyen, K. Vu, D.-Y. Choi, A. Mitchell, S.J. Madden, and B.J. Eggleton, J. Opt. Soc. Am. B 36, 146 (2019).CrossRefGoogle Scholar
  5. 5.
    P. Pradhan, R. Naik, N. Das, and A.K. Panda, Opt. Laser Technol. 96, 158 (2017).CrossRefGoogle Scholar
  6. 6.
    O.P. Paiuk, L.A. Revutska, A.V. Stronski, A. Yo Gudymenko, H.V. Stanchu, A.A. Gubanova, and T.A. Kryskov, Semicond. Phys. Quant. Electron. & optoelectron. 19, 205 (2016).CrossRefGoogle Scholar
  7. 7.
    O.V. Iaseniuc, I.A. Cojocaru, A.M. Prisacar, A.M. Nastas, and M.S. Iovu, Opt. Spectrosc. 121, 140 (2016).CrossRefGoogle Scholar
  8. 8.
    P. Pradhan, R. Naik, N. Das, and A.K. Panda, Optical properties change in Sb/As2Se3 bilayer thin film, in AIP Conference Proceedings, vol. 1832, no. 1 (AIP Publishing, 2017), p. 080001.Google Scholar
  9. 9.
    M. Behera, N.C. Mishra, and R. Naik, Thermal annealing induced diffusion at the interface of Bi/As2Se3 bilayer, in AIP Conference Proceedings, vol. 2005, no. 1 (AIP Publishing, 2018), p. 080001.Google Scholar
  10. 10.
    M. Behera and R. Naik, Appl. Phys. A 122, 913 (2016).CrossRefGoogle Scholar
  11. 11.
    O. Madelung, Semiconductors: Data Handbook (Berlin: Springer, 2012).Google Scholar
  12. 12.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices (Hoboken: wiley, 2006).CrossRefGoogle Scholar
  13. 13.
    S. Bouden, A. Dahi, F. Hauquier, H. Randriamahazaka, and J. Ghilane, Sci. Rep. 6, 36708 (2016).CrossRefGoogle Scholar
  14. 14.
    L.J. Zhang, F.Y. Bai, X. Gao, N. Du, Y.H. Xing, and L.X. Sun, New J. Chem. 41, 6883 (2017).CrossRefGoogle Scholar
  15. 15.
    L. Wu, L. Chen, J. Dai, Ch Cui, Zh Fu, and X. Wu, Inorg. Chem. Commun. 4, 574 (2001).CrossRefGoogle Scholar
  16. 16.
    Y. Mao, G. Guo, J. Yuan, and J. Zhong, Appl. Surf. Sci. 464, 236 (2019).CrossRefGoogle Scholar
  17. 17.
    A.F. Qasrawi and S.R. Shehada, Physica E 103, 151 (2018).CrossRefGoogle Scholar
  18. 18.
    Zh Li, R. Cui, B. Liu, G. Xue, H. Hu, F. Fu, and J. Wang, J. Mol. Struct. 920, 436 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Ji, M. Baiyin, Sh Ji, and Y. An, Inorg. Chem. Commun. 10, 555 (2007).CrossRefGoogle Scholar
  20. 20.
    R.L. González, A. Antonelli, A.S. Chaves, and J.J. Meléndez, Phys. Chem. Chem. Phys. 20, 1809 (2018).CrossRefGoogle Scholar
  21. 21.
    A.F. Qasrawi, J. All. Compd. 769, 78 (2018).CrossRefGoogle Scholar
  22. 22.
    P. Nagels, L. Tichý, R. Mertens, and R. Callaerts, Mater. Lett. 46, 234 (2000).CrossRefGoogle Scholar
  23. 23.
    G. Qin, L. Fan, and A. Watanabe, J. Mater. Proc. Technol. 227, 16 (2016).CrossRefGoogle Scholar
  24. 24.
    C.H. Chung and B. Dunn, J. App. Phys. 48, 1751 (1977).CrossRefGoogle Scholar
  25. 25.
    T. Liu, X. Zhang, J. Zhang, W. Wang, L. Feng, L. Wu, W. Li, and G. Zeng, and B. Li Intern. J. Photoenergy 2013, 765938 (2013).Google Scholar
  26. 26.
    J.D. Joannopoulos, J. Non-Crystalline Solids 35, 781 (1980).CrossRefGoogle Scholar
  27. 27.
    A. Kovalskiy, J.R. Neilson, A.C. Miller, F.C. Miller, M. Vlcek, and H. Jain, Thin Solid Films 516, 7511 (2008).CrossRefGoogle Scholar
  28. 28.
    R.S. Sussmann, I.G. Austin, and T.M. Searle, J. Phys. C: Solid State Phys. 8, L564 (1975).CrossRefGoogle Scholar
  29. 29.
    R. Amin, M.H. Tahersima, Z. Ma, C. Suer, K. Liu, H. Dalir, and V.J. Sorger, J. Opt. 20, 054003 (2018).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of Science-Al FaisaliahKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Physics, Faculty of ScienceUniversity of JeddahJeddahSaudi Arabia
  3. 3.Department of PhysicsArab American UniversityJeninPalestine
  4. 4.Group of Physics, Faculty of EngineeringAtilim UniversityAnkaraTurkey

Personalised recommendations