Journal of Electronic Materials

, Volume 48, Issue 10, pp 6529–6539 | Cite as

Effect of ITO Nanoparticles on Dielectric Relaxation Processes and an Analysis of The Electric Impedance Characteristics of ITO/Epoxy Nanocomposites for Embedded Capacitor Devices

  • W. JilaniEmail author
  • A. Bouzidi
  • N. Mzabi
  • O. Gallot-Lavallée
  • H. Guermazi


Epoxy/ITO nanocomposites containing various filler ITO concentrations by weight were successfully fabricated. Using Differential Scanning Calorimetry (DSC), a thermo-analytical technique used to study the glass transition temperatures, we expected to find a restriction in the molecular mobility of the polymer chains that might confirm the influence of incorporating ITO contents into the epoxy material. Several complementary techniques were investigated, such as dielectric relaxation spectroscopy (DRS) at the range of frequency (10−1–106) Hz and over the temperature range from − 80°C to 240°C, and time-domain spectroscopy (TDS) with frequency domain (10−5–10−1) Hz. The experimental data were investigated and interpreted in terms of various dielectric formalisms. For TDS results, the neat epoxy is affected by the added ITO nanoparticles. In the low-frequency domain of TDS measurements, the depolarization current curves of the nanocomposites are precisely fitted in a parallel circuit (RiCi) association model. The obtained dielectric data of TDS analysis shows two interfacial relaxation processes. The first wide peak was mainly ascribed to the charge accumulations ITO-polymer interfaces and the additional peak can be related to the charge accumulated at the interface material-electrodes. Impedance evaluated data were analyzed using a consistent electrical circuit formalism. From − 80°C to 60°C, the nanocomposites exhibited an ohmic behaviour within the added ITO nanofiller. Between 60°C and 120°C, the nanocomposites exhibit a capacitive contribution behavior which makes the material suitable for capacitors devices. Above 120°C, the Nyquist design illustrations [(− Z″) versus (Z′)] are well theoretical fitted to an equivalent circuit model achieved by impedance with designed parameters: resistance (Rb) and constant phase element (CPE) combinations.


Epoxy resin nanocomposites ITO nanofiller dielectric relaxation process time-domain spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study has been supported by the Tunisian Ministry of High Education Scientific Research and Information and Communication Technologies, Tunisia (ICTP through TWAS Grant No. 00 043RG/PHYS/AF/AC), Higher Education and Scientific Research sector.


  1. 1.
    P. Chahal, R.R. Tummala, M.G. Allen, and M. Swaminathan, IEEE. Trans. Compon. Packag. Manuf. Technol. B 21, 184 (1998).CrossRefGoogle Scholar
  2. 2.
    C.J. Dias, R. Igreja, R. Marat-Mendes, P. Inacio, J.N. Marat-Mendes, and D.K. Das-Gupta, IEEE Trans. Dielectr. Electr. Insul. 11, 35 (2004).CrossRefGoogle Scholar
  3. 3.
    Z.M. Dang, Y. Shen, and C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002).CrossRefGoogle Scholar
  4. 4.
    Z.-M. Dang, Y.-H. Lin, and C.W. Nan, Adv. Mater. 15, 1625 (2003).CrossRefGoogle Scholar
  5. 5.
    C.V. Chanmal and J.P. Jog, Express Polym. Lett. 2, 294 (2008).CrossRefGoogle Scholar
  6. 6.
    A. Soulintzis, G. Kontos, P. Karahaliou, G.C. Psarras, S.N. Georga, and C.A. Krontiras, J. Polym. Sci. Part B Polym. Phys. 47, 445 (2009).CrossRefGoogle Scholar
  7. 7.
    F. Carmona and C. Mouney, J. Mater. Sci. 27, 1322 (1992).CrossRefGoogle Scholar
  8. 8.
    I.G. Chen and W.B. Johnson, J. Mater. Sci. 26, 1565 (1991).CrossRefGoogle Scholar
  9. 9.
    G. Boiteux, J. Fournier, D. Issotier, G. Seytre, and G. Marichy, Synth. Met. 102, 1234 (1999).CrossRefGoogle Scholar
  10. 10.
    J. Fournier, G. Boiteux, and G. Seytre, J. Mater. Sci. Lett. 16, 1677 (1997).CrossRefGoogle Scholar
  11. 11.
    Y.P. Mamunya, V.V. Davydenko, P. Pissis, and E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002).CrossRefGoogle Scholar
  12. 12.
    H. Smaoui, L. El Mir, H. Guermazi, S. Agnel, and A. Toureille, J. Alloys Compd. 477, 316 (2009).CrossRefGoogle Scholar
  13. 13.
    C. Zhang, R. Mason, and G. Stevens, IEEE J. Trans. FM 126, 1105 (2006).CrossRefGoogle Scholar
  14. 14.
    Y.Y. Sun, Z.Q. Zhang, K.S. Moon, and C.P. Wong, J. Polym. Sci. Part B Polym. Phys. 42, 3849 (2004).CrossRefGoogle Scholar
  15. 15.
    G. Murtaza, I. Ahmad, A. Hakeem, P. Mao, X. Guohua, M.T. Farid, G. Mustafa, M. Kanwal, and M. Hussain, Dig. J. Nanomater. Biostruct. 10, 1393 (2015).Google Scholar
  16. 16.
    W.S. Kim, H.S. Song, B.O. Lee, K.H. Kwon, and M.S. Lim, Macromol. Res. 10, 253 (2002).CrossRefGoogle Scholar
  17. 17.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, and H.C.Z. Loye, Materials 2, 1697 (2009).CrossRefGoogle Scholar
  18. 18.
    G.M. Tsangaris, G.C. Psarras, and A.J. Kontopoulos, J. Non Cryst. Solids 131–133, 1164 (1991).CrossRefGoogle Scholar
  19. 19.
    I.K. Varma and V.G. Gupta, Thermosetting resin Properties, Comprehensive Composite Materials, eds. R. Talreja, J.-A.E. Manson, A. Kelly, and C. Zweben (Amsterdam: Elsevier, 2000), p. 2.Google Scholar
  20. 20.
    D. Hull and T.W. Clyne, An Introduction to Composite Materials, 2nd ed. (Cambridge: Cambridge University Press, 1996), p. 326.CrossRefGoogle Scholar
  21. 21.
    I.M. Daniel and O. Ishai, Engineering Mechanics of Composite Materials (Oxford: Oxford University Press, 1994), pp. 37–84.Google Scholar
  22. 22.
    M.M. Schwartz, Composite Materials Hand Book (New York: McGraw-Hill, 1984).Google Scholar
  23. 23.
    B. Ellis, Chemistry and Technology of Epoxy Resins (London: Blackie Academic and Professional, 1993).CrossRefGoogle Scholar
  24. 24.
    G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, and M.N. Pisanias, Express Polym. Lett. 12, 781 (2007).CrossRefGoogle Scholar
  25. 25.
    H.Z. Akbas, H. Durmus, and G. Ahmetli, OJAS 2, 443 (2009).Google Scholar
  26. 26.
    F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy (Berlin: Springer, 2003).CrossRefGoogle Scholar
  27. 27.
    L. El Mir, K. Omri, J. El Ghoul, A.S. AL-Hobaib, H. Dahman, and C. Barthou, Superlattices Microstruct. 65, 248 (2014).CrossRefGoogle Scholar
  28. 28.
    A. Bouzidi, K. Omri, L. El Mir, and H. Guermazi, Mater. Sci. Semi. Conduct. Process. 39, 536 (2015).CrossRefGoogle Scholar
  29. 29.
    I.K. Latif, H.M. Abdullah, and M.H. Saleem, J. Nanosci. Nanotechnol. 6, 48 (2016).Google Scholar
  30. 30.
    B.V. Hamon, Proc. IEE 99, 151 (1952).Google Scholar
  31. 31.
    V.A. Bershtein, L.M. Egorova, P.N. Yakushev, P. Pissis, P. Sysel, and L. Brozova, J. Polym. Sci. Part B Polym. Phys. 40, 1056 (2002).CrossRefGoogle Scholar
  32. 32.
    N. Hao, M. Bohning, and A. Schonhals, Macromolecules 40, 9672 (2007).CrossRefGoogle Scholar
  33. 33.
    N. Hao, M. Bohning, H. Goering, and A. Schonhals, Macromolecules 40, 2955 (2007).CrossRefGoogle Scholar
  34. 34.
    A. Schonhals, H. Goering, F.R. Costa, U. Wagenknecht, and G. Heinrich, Macromolecules 42, 4165 (2009).CrossRefGoogle Scholar
  35. 35.
    P.J. Purohit, J.E. Huacuja-Sánchez, D.Y. Wang, F. Emmerling, A. Thünemann, G. Heinrich, and A. Schönhals, Macromolecules 44, 4342 (2011).CrossRefGoogle Scholar
  36. 36.
    L. Zhao, X. Feng, X. Mi, Y. Li, H. Xie, and X. Yin, J. Intell. Mater. Syst. Struct. 26, 1491 (2014).CrossRefGoogle Scholar
  37. 37.
    G.M. Tsangaris, G.C. Psarras, A.J. Kontopoulos, and J. Non, Cryst. Solids 131–133, 1164 (1991).CrossRefGoogle Scholar
  38. 38.
    W. Howard, J.R. Starkweather, and P. Avakian, J. Polym. Sci. Part B Polym. Phys. 30, 637 (1992).CrossRefGoogle Scholar
  39. 39.
    A. Triki, M. Guicha, M. Ben Hassen, M. Arous, and Z. Fakhfakh, J. Mater. Sci. 46, 3698 (2011).CrossRefGoogle Scholar
  40. 40.
    G.M. Tsangaris, G.C. Psarras, and N. Kouloumbi, J. Mater. Sci. 33, 2027 (1998).CrossRefGoogle Scholar
  41. 41.
    A. Soulintzis, G. Kontos, P. Karahaliou, G.C. Psarras, S.N. Georga, and C.A. Krontiras, J. Polym. Sci. Part B Polym. Phys. 4, 445 (2009).CrossRefGoogle Scholar
  42. 42.
    W. Jilani, N. Mzabi, N. Fourati, C. Zerrouki, O. Gallot-Lavallee, R. Zerrouki, and H. Guermazi, J. Mater. Sci. 51, 7874 (2016).CrossRefGoogle Scholar
  43. 43.
    S. Karoui, S. Kamoun, and A. Jouini, J. Solid State Chem. 197, 60 (2013).CrossRefGoogle Scholar
  44. 44.
    P. Muralidharan, M. Venkateswarlu, and N. Satyanarayana, J. Non Cryst. Solids 351, 583–594 (2005).CrossRefGoogle Scholar
  45. 45.
    A. Kumar, B.P. Singh, R.N.P. Choudhary, and A.K. Thakur, J. Alloys Compd. 394, 292–302 (2005).CrossRefGoogle Scholar
  46. 46.
    S. Selvasekarapandian and M. Vijaykumar, Mater. Chem. Phys. 80, 29 (2003).CrossRefGoogle Scholar
  47. 47.
    A.B. Afzal, M.J. Akhtar, M. Nadeem, M. Ahmad, M.M. Hassan, T. Yasin, and M. Mehmood, J. Phys. D Appl. Phys. 42, 015411 (2009).CrossRefGoogle Scholar
  48. 48.
    N.M. Kocherginsky and Z. Wang, Synth. Met. 156, 1065 (2006).CrossRefGoogle Scholar
  49. 49.
    A. Ben Rhaiem, K. Guidara, M. Gargouri, and A. Daoud, J. Alloys Compd. 392, 68 (2005).CrossRefGoogle Scholar
  50. 50.
    D.K. Parathan, B.K. Samantry, R.N.P. Chauthaey, and A.K. Thakur, Mater. Sci. Eng. B 116, 7 (2005).CrossRefGoogle Scholar
  51. 51.
    M. Nadeem, M.J. Akhtar, and A.Y. Khan, Sol. State Commun. 134, 431 (2005).CrossRefGoogle Scholar
  52. 52.
    C.R. Bowen, S. Buschhorn, and V. Adamaki, Pure Appl. Chem. 86, 765 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • W. Jilani
    • 1
    • 2
    Email author
  • A. Bouzidi
    • 2
    • 3
  • N. Mzabi
    • 2
  • O. Gallot-Lavallée
    • 4
  • H. Guermazi
    • 2
  1. 1.Department of Physics, Faculty of Sciences and Arts Dhahran Al JanoubKing Khalid UniversityAbhaKingdom of Saudi Arabia
  2. 2.Unity of Physics of Insulating and Semi-Insulating Materials, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia
  3. 3.Technical and Vocational Training Corporation: Technical College BranchAhad RufidahKingdom of Saudi Arabia
  4. 4.Grenoble Electrical Engineering Laboratory (G2ELab)Grenoble University Alpes & CNRS (UGA)GrenobleFrance

Personalised recommendations