Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6306–6318 | Cite as

Local Symmetry Reduction in Lanthanum Substituted Barium Stannate Ceramics Densified Using Bi2O3 Sintering Aids

  • Sharmila Bajpai
  • P. K. BajpaiEmail author
Article
  • 15 Downloads

Abstract

Densified Ba1−xLaxSnO3 (BLSO) ceramics were synthesized at relatively lower sintering temperature by a conventional solid state reaction route. X-ray diffraction (XRD) analysis using the Reitveld refinement technique inferred cubic (space group Pm–3m) average crystalline structure. The effect of La-substitution on variations of lattice parameters could be attributed to two competing factors, viz. ionic radii of the dopant and partial reduction of Sn4+ into Sn2+. XRD data indicate local symmetry reduction from cubic to orthorhombic (Pbnm), evident from the observed splitting in {211}p and {310}p peaks of pseudo cubic structure, as well as corresponding super reflections. The synthesized ceramics were highly porous with percentage densification in the range (60–70)% due to the relatively low sintering temperature used. Densification was improved using 2 wt.% Bi2O3 as a sintering aid, which resulted in highly dense ceramics with relative density ≈ 95%. Sintering temperature reduction of ≈ 300°C was also achieved relative to that required in normal solid state synthesis. This is very important to reduce defects and inhibit uneven grain growth. Microstructure and elemental analysis probed through scanning electron microscopy and energy-dispersive x-ray spectroscopy revealed that Bi replaces lanthanum and that liquid phase sintering is mainly responsible for the high densification using the sintering aid. The structural indicators of symmetry reduction were corroborated by experimentally observed Raman modes in an otherwise symmetry-forbidden cubic phase. The local symmetry reduction is attributed mainly to octahedral tilts corresponding to orthorhombic symmetry.

Keywords

Local symmetry reduction x-ray diffraction Raman scattering spectroscopy substituted perovskites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Facilities developed under Special assistance program of University Grants Commission, New Delhi and FIST program of Department of Science and Technology, Govt. of India in the Department of Pure and Applied Physics are gratefully acknowledged. Sharmila Bajpai is grateful to Guru Ghasidas Vishwavidyalaya, Bilaspur, India for providing Non-NET fellowship.

References

  1. 1.
    P.T. Moseley, D.E. Williams, J.O.W. Norris, and B.C. Tofield, Sens. Actuators 14, 79 (1988).CrossRefGoogle Scholar
  2. 2.
    Y. Shimizu, M. Shimabukaro, H. Arai, and T. Seiyama, J. Electrochem. Soc. 136, 1206 (1989).CrossRefGoogle Scholar
  3. 3.
    U. Lumpe, J. Gerblinger, and H. Meixner, Sens. Actuators, B 24–25, 657 (1995).CrossRefGoogle Scholar
  4. 4.
    U. Lumpe, J. Gerblinger, and H. Meixner, Sens. Actuators, B 26–27, 97 (1995).CrossRefGoogle Scholar
  5. 5.
    I. Kocemba, M.W. Jedrzejewska, A. Szychowska, J. Rynkowski, and M. Gowka, Sens. Actuators, B 121, 401 (2007).CrossRefGoogle Scholar
  6. 6.
    P.K. Bajpai, K. Ratre, M. Pastor, and T.P. Sinha, Bull. Mater. Sci. 26, 461 (2003).CrossRefGoogle Scholar
  7. 7.
    M. Licheron, G. Jouan, and E. Husson, J. Eur. Ceram. Soc. 17, 1453 (1995).CrossRefGoogle Scholar
  8. 8.
    T.R.N. Kutty and R. Vivekanandan, Mater. Res. Bull. 22, 1457 (1987).CrossRefGoogle Scholar
  9. 9.
    C.P. Udawatte, M. Kakihana, and M. Yoshimura, Solid State Ion. 108, 23 (1998).CrossRefGoogle Scholar
  10. 10.
    Y.J. Song and S. Kim, J. Ind. Eng. Chem. 7, 183 (2001).Google Scholar
  11. 11.
    A.J. Smith and A.J.E. Welch, Struct. Acta Crystallogr. 13, 653 (1960).Google Scholar
  12. 12.
    E.H. Mountstevens, J.P. Attfeld, and S.A.T. Redfern, J. Phys. Condens. Matter 15, 8315 (2003).CrossRefGoogle Scholar
  13. 13.
    G. Larramona, C. Gutierrez, I. Pereira, M.R. Nunes, and F.M.A. Da Costa, J. Chem. Soc., Faraday Trans. 85, 907 (1989).CrossRefGoogle Scholar
  14. 14.
    H. Mizoguchi, P.M. Woodward, C.H. Park, and H. Keszler, J. Am. Chem. Soc. 126, 9796 (2004).CrossRefGoogle Scholar
  15. 15.
    M. Enhessari and A. Salehabadi, Progresses in Chemical Sensors, ed. W. Wang (London: Intech Open Pub, 2016), pp. 59–92.Google Scholar
  16. 16.
    R.A. Bucur, A.I. Bucura, S. Novaconi, and I. Nicoara, J. Alloys Compd. 542, 142 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Roy, P. Selvaraj, P.S. Devi, and S. Sundaram, ACS Sustain. Chem. Eng. 6, 3299 (2018).CrossRefGoogle Scholar
  18. 18.
    D.O. Scanlon, Phys. Rev. B 87, 161201 (2013).CrossRefGoogle Scholar
  19. 19.
    S.M. Xing, C. Shan, K. Jiang, J.J. Zhu, Y.W. Li, Z.G. Hu, and J.H. Chu, J. Appl. Phys. 117, 103107 (2015).CrossRefGoogle Scholar
  20. 20.
    F. Huang, D. Chen, X.L. Zhang, R.A. Caruso, and Y.B. Cheng, Adv. Funct. Mater. 20, 1301 (2010).CrossRefGoogle Scholar
  21. 21.
    H.J. Kim, U. Kim, T.H. Kim, J. Kim, H.M. Kim, B.G. Jeon, W.J. Lee, H.S. Mun, K.T. Hong, J. Yu, K. Char, and K.H. Kim, Phys. Rev. B 86, 165205 (2012).CrossRefGoogle Scholar
  22. 22.
    D.T. Anh and N.T. Thanh, Univ. J. Phys. Appl. 11, 235 (2017).Google Scholar
  23. 23.
    S. Moshtaghi, S. Ajabshir, and M.S. Niasari, J. Mater. Sci. Mater. Electron. 27, 834 (2016).CrossRefGoogle Scholar
  24. 24.
    S. Tao, F. Gao, X. Liu, and O.T. Sùrensen, Sens. Actuators, B 71, 223 (2000).CrossRefGoogle Scholar
  25. 25.
    J. John,V.P.M. Pillai, A.R. Thomas, R. Philip, J. Joseph, S. Muthunatesan,V. Ragavendran, and R. Prabhu, in IOP Conference Proceedings (2017), p. 012007Google Scholar
  26. 26.
    S. Upadhyay, Bull. Mater. Sci. 36, 1019 (2013).CrossRefGoogle Scholar
  27. 27.
    U. Kumar, M.J. Ansaree, and S. Upadhyay, Process. Appl. Ceram. 1, 177 (2017).CrossRefGoogle Scholar
  28. 28.
    A.M. Azad and N.C. Hon, J Alloys Compd. 270, 95 (1998).CrossRefGoogle Scholar
  29. 29.
    M.G. Smith, J.B. Goodenough, A. Manthiram, R.D. Taylor, W. Peng, and C.W. Kimball, J. Solid State Chem. 98, 181 (1992).CrossRefGoogle Scholar
  30. 30.
    M. Bao, W.D. Lee, and P. Zhu, J. Mater. Sci. 28, 6617 (1993).CrossRefGoogle Scholar
  31. 31.
    S. Upadhayay, O. Prakash, and D. Kumar, J. Mater. Sci. 16, 1330 (1997).Google Scholar
  32. 32.
    J.C. Farfan, J.A. Rodriguez, F. Fajardo, E. Vera Lopez, D.A.L. Tellez, and J.R. Rojas, Phys. B 404, 2720 (2009).CrossRefGoogle Scholar
  33. 33.
    C. Huang, X. Wang, Q. Shi, X. Liu, Y. Zhang, F. Huang, and T. Zhang, Inorg. Chem. 54, 4002 (2015).CrossRefGoogle Scholar
  34. 34.
    D.W. Kim, S.S. Shin, S. Lee, I.S. Cho, D.H. Kim, C.W. Lee, H.S. Jung, and K.S. Hong, Chemsuschem 6, 449 (2013).CrossRefGoogle Scholar
  35. 35.
    C. Doroftei, P.D. Popa, and F. Iacomi, Sens. Actuators, A 173, 24 (2012).CrossRefGoogle Scholar
  36. 36.
    J. Creda, J. Arbil, R. Diaz, G. Dezannweau, and J.R. Morante, Mater. Lett. 56, 131 (2002).CrossRefGoogle Scholar
  37. 37.
    R. Nakagauchi and H. Kozuka, J. Sol-Gel. Sci. Technol. 42, 221 (2007).CrossRefGoogle Scholar
  38. 38.
    A.M. Azad, M. Hashim, and S. Baptist, J. Mater. Sci. 35, 5475 (2000).CrossRefGoogle Scholar
  39. 39.
    S. Song, J. Zhai, L. Gao, X. Yao, and J. Phys, Chem. Solids 70, 1213 (2009).CrossRefGoogle Scholar
  40. 40.
    W. Lu and H. Schmidt, J. Sol-Gel. Sci. Technol. 42, 55 (2007).CrossRefGoogle Scholar
  41. 41.
    Y. Wang, A. Chesnaud, E. Bevillon, J. Yang, and G. Dezanneau, Int. J. Hydrog. Energy 36, 7688 (2011).CrossRefGoogle Scholar
  42. 42.
    W. Lu and H. Schmidt, J. Eur. Ceram. Soc. 25, 919 (2005).CrossRefGoogle Scholar
  43. 43.
    W. Lu and H. Schmidt, Ceram. Int. 34, 645 (2008).CrossRefGoogle Scholar
  44. 44.
    N.U. Patil and G.H. Jain, in Proceedings of 6th International Conference on Sensing Technology (2013), pp. 433–447Google Scholar
  45. 45.
    M. Yasukawa, T. Kono, K. Ueda, H. Yanagi, and H. Hosono, Mater. Sci. Eng., B 173, 29 (2009).CrossRefGoogle Scholar
  46. 46.
    B. Ramdas and R. Vijayaraghavan, Bull. Mater. Sci. 33, 75 (2010).CrossRefGoogle Scholar
  47. 47.
    E. Bevillon, A. Chesnaud, Y. Wang, G. Dezanneau, and G. Geneste, J. Phys. Condens. Matter 20, 145217 (2008).CrossRefGoogle Scholar
  48. 48.
    R. Koferstein, L. Jager, M. Zenkner, and S.G. Ebbinghaus, J. Eur. Ceram. Soc. 29, 2317 (2009).CrossRefGoogle Scholar
  49. 49.
    M.C.F. Alves, S.C. Souza, H.H.S. Lima, and M.R. Nascimento, J. Alloys Compd. 476, 507 (2009).CrossRefGoogle Scholar
  50. 50.
    S. Sallis, D.O. Scanlon, S.C. Chae, N.F. Quackenbush, D.A. Fischer, J.C. Woicik, J.H. Guo, S.W. Cheog, and L.F.J. Piper, Appl. Phys. Lett. 103, 042105 (2013).CrossRefGoogle Scholar
  51. 51.
    K.H. Joon, K.H. Min, K.T. Hoon, M.H. Sik, J. Byung-Gu, H.K. Teak, L. Woong-Jhae, J. Chanjong, K.K. Hoon, and C. Kookrin, Appl. Phys. Express 5, 061102 (2012).CrossRefGoogle Scholar
  52. 52.
    M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, and P. Nanni, J. Eur. Ceram. Soc. 21, 1981 (2002).CrossRefGoogle Scholar
  53. 53.
    C. Huang, X. Wang, X. Wang, X. Liu, Q. Shi, X. Pan, and X. Li, RSC Adv. 6, 25379 (2016).CrossRefGoogle Scholar
  54. 54.
    K.N. Singh and P.K. Bajpai, Int. J. Phys. Sci. 16, 37111 (2017).CrossRefGoogle Scholar
  55. 55.
    R. Köferstein and F. Yakuphanoglu, J. Alloys Compd. 506, 678 (2010).CrossRefGoogle Scholar
  56. 56.
    R. Köferstein, L. Jäger, M. Zenkner, T. Müller, and S.G. Ebbinghaus, J. Eur. Ceram. Soc. 30, 1419 (2010).CrossRefGoogle Scholar
  57. 57.
    J. Cerda, J. Arbiol, G. Dezanneau, R. Dĺaz, and J.R. Morante, Sens. Actuators, B 84, 21 (2002).CrossRefGoogle Scholar
  58. 58.
    V.J. Angadi, S.P. Kubrin, D.A. Sarychev, S. Matteppanavar, B. Rudraswam, H.L. Liu, and K. Praveena, J. Magn. Magn. Mater. 441, 348 (2017).CrossRefGoogle Scholar
  59. 59.
    V.J. Angadi, B. Rudraswamy, K. Sadhana, and K. Praveena, J. Magn. Magn. Mater. 409, 111 (2016).CrossRefGoogle Scholar
  60. 60.
    V.J. Angadi, L. Choudhury, K. Sadhanac, H.L. Liu, R. Sandhya, S. Matteppanavar, B. Rudraswamy, V. Pattar, R.V. Anavekar, and K. Praveena, J. Magn. Magn. Mater. 424, 01 (2017).CrossRefGoogle Scholar
  61. 61.
    B. Hadjarab, A. Bouguelia, A. Benchettara, and M. Trari, J. Alloys Compd. 461, 360 (2008).CrossRefGoogle Scholar
  62. 62.
    A.S. Bhalla, R. Guo, and R. Roy, Mater. Res. Innov. 4, 3 (2000).CrossRefGoogle Scholar
  63. 63.
    S. Wang, H. He, and H. Su, J. Mater. Sci. Mater. Electron. 24, 2385 (2013).CrossRefGoogle Scholar
  64. 64.
    P.S. Dobal, A. Dixit, and R.S. Katiyar, J. Raman Spectrosc. 38, 42 (2007).CrossRefGoogle Scholar
  65. 65.
    M.A. Islam, J.M. Rondinelli, J.E. Spanier, and J. Physics, Condens. Matter 25, 175902 (2012).CrossRefGoogle Scholar
  66. 66.
    A. Slodcyzk, P. Colomban, and M.P. Thi, J. Phys. Chem. Solids 69, 2503 (2008).CrossRefGoogle Scholar
  67. 67.
    P.K. Bajpai, C.R.K. Mohan, R. Ganjir, R. Kumar, A. Kumar, and R.S. Katiyar, J. Raman Spectrosc. 49, 324 (2018).CrossRefGoogle Scholar
  68. 68.
    A. Slodcyzk and P. Colomban, Materials 3, 5007 (2010).CrossRefGoogle Scholar
  69. 69.
    M.T. Buscaglia, M. Leoni, M. Viviani, and V. Buscaglia, J. Mater. Res. 18, 560 (2002).CrossRefGoogle Scholar
  70. 70.
    K.K. James, P.S. Krishnaprasad, K. Hasna, and M.K. Jayaraj, J. Phys. Chem. Solids 76, 64 (2015).CrossRefGoogle Scholar
  71. 71.
    T.N. Stanislavchuk, A.A. Sirenko, A.P. Litvinchuk, X. Luo, and S.-W. Cheong, J. Appl. Phys. 112, 044108 (2012).CrossRefGoogle Scholar
  72. 72.
    L.F. Zhu, B.P. Zhang, L. Zhao, and J.F. Li, J. Mater. Chem. C 2, 4764 (2014).CrossRefGoogle Scholar
  73. 73.
    H.B. Sales, V. Bouquet, S. Députier, S. Ollivier, and F. Gouttefangeas, Solid State Sci. 28, 67 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Advanced Materials Laboratory, Department of Pure and Applied PhysicsGuru Ghasidas VishwavidyalayaBilaspurIndia

Personalised recommendations