Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6503–6511 | Cite as

Optical, Magnetic and Gas Sensing Properties of LaFeO3 Nanoparticles Synthesized by Different Chemical Methods

  • Zakie Anajafi
  • Mahmoud NaseriEmail author
  • G. Neri
Article
  • 11 Downloads

Abstract

LaFeO3 nanoparticles were synthesized by different chemical procedures, i.e., microwave-thermal treatment method (MTTM), hydrothermal method (HTM) and sol–gel method (SGM), by using metal nitrates as La- and Fe-precursors. The synthesized nanoparticles were calcined at various temperature from 450°C to 1000°C. SEM analysis of samples synthesized by MTTM and SGM highlighted the formation of uniform spherical-like nanoparticles while those obtained by HTM were a combination of spherical particles and nanorods. X-ray diffraction patterns of nanocrystals confirmed that these nanoparticles are formed by crystalline LaFeO3 in the orthorhombic structure. The synthesized LaFeO3 were further investigated for analyzing their optical, magnetic and gas sensing behaviors. Band gap values for LaFeO3 by MTTM and HTM were in the range 2.07–2.41 eV and 1.57–1.94 eV, respectively, for the samples annealed at growing temperature, whereas vibrating sample magnetometer analysis demonstrated their weak ferromagnetic behavior. LaFeO3 synthesized by SGM showed interesting sensing properties for monitoring O2 and ethanol in ambient air.

Keywords

Rare-earth orthoferrites LaFeO3 optical properties magnetic properties sensing properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry of Science Research and Technology of Iran under the FRGS grant, Malayer University of Iran.

References

  1. 1.
    E. Arendt, A. Maione, A. Klisinska, O. Sanz, M. Montes, S. Suarez, J. Blanco, and P. Ruiz, Appl. Catal. A 339, 1 (2008).CrossRefGoogle Scholar
  2. 2.
    C.S. Cheng, L. Zhang, Y.J. Zhang, and S.P. Jiang, Solid State Ionics 179, 282 (2008).CrossRefGoogle Scholar
  3. 3.
    S. Pathak, J. Kuebler, A. Payzant, and N. Orlovskaya, J. Power Sources 195, 3612 (2010).CrossRefGoogle Scholar
  4. 4.
    M.B. Bellakki, C. Madhu, T. Greindl, S. Kohli, P. McCurdy, and V. Manivannan, Rare Met. 29, 491 (2010).CrossRefGoogle Scholar
  5. 5.
    W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, and S. Ruan, J Alloys Compd. 695, 1122 (2017).CrossRefGoogle Scholar
  6. 6.
    M.M. Rahman, M.M. Alam, A.M. Asiri, and M.A. Islam, RSC Adv. 7, 22627 (2017).CrossRefGoogle Scholar
  7. 7.
    T. Van Dang, N. Duc Hoa, N. Van Duy, and N. Van Hieu, ACS Appl. Mater. Interfaces. 8, 4828 (2016).CrossRefGoogle Scholar
  8. 8.
    N. Van Hoang, C.M. Hung, N.D. Hoa, N. Van Duy, I. Park, and N. Van Hieu, Sens. Actuators, B 282, 876 (2019).CrossRefGoogle Scholar
  9. 9.
    C.M. Hung, H.V. Phuong, N. Van Duy, N.D. Hoa, and N. Van Hieu, J. Alloys Compd. 765, 1237 (2018).CrossRefGoogle Scholar
  10. 10.
    L. Tepech-Carrillo, A. Escobedo-Morales, A. Pérez-Centeno, E. Chigo-Anota, J.F. Sánchez-Ramírez, E. López-Apreza, and J. Gutiérrez-Gutiérrez, J. Nanomaterials 2016, Art. ID 6917950, 7 p.Google Scholar
  11. 11.
    S. Li, L. Jing, W. Fu, L. Yang, B. Xin, and H. Fu, Mater. Res. Bull. 42, 203 (2007).CrossRefGoogle Scholar
  12. 12.
    P. Tang, Y. Tong, H. Chen, F. Cao, and G. Pan, Curr. Appl. Phys. 13, 340 (2013).CrossRefGoogle Scholar
  13. 13.
    P.V. Gosavi and R.B. Biniwale, Mater. Chem. Phys. 119, 324 (2010).CrossRefGoogle Scholar
  14. 14.
    M. Popa and J. Frantti, M. Kakihana. Solid State Ionics 154–155, 135 (2002).CrossRefGoogle Scholar
  15. 15.
    M.G. Naseri, M. MajlesAra, E. Saion, and A. Shaari, J. Magn. Magn. Mater. 350, 141 (2014).CrossRefGoogle Scholar
  16. 16.
    M.G. Naseri, M.K. Halimah, A. Dehzangi, A. Kamalianfar, and E. Saion, J. Phys. Chem. Solids 75, 315 (2014).CrossRefGoogle Scholar
  17. 17.
    M.G. Naseri, E. Saion, M. Hashim, A. Shaari, and H. Ahangar, Solid State Commun. 151, 1031 (2011).CrossRefGoogle Scholar
  18. 18.
    A. Mirzaei and G. Neri, Sens. Actuators, B 237, 749 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Nagai, N. Fujiwara, M. Asahi, S. Yamazaki, Z. Siroma, T. Ioroi, and J. Asian, Ceram. Soc. 2, 329 (2014).Google Scholar
  20. 20.
    P. Tang, Y. Tong, H. Chen, F. Cao, and G. Pan, Curr. Appl. Phys. 13, 340 (2013).CrossRefGoogle Scholar
  21. 21.
    W. Lee, H.J. Yun, and J. Yoon, J. Alloys Compd. 583, 320 (2014).CrossRefGoogle Scholar
  22. 22.
    T. Anil, N.K. Lakshun, and R.K.C. James, Int. J. Chem. Tech. Res. 6, 3353 (2014).Google Scholar
  23. 23.
    F. Bidrawn, S. Lee, J.M. Vohs, and R.J. Gorte, J. Electrochem. Soc. 155, 660 (2008).CrossRefGoogle Scholar
  24. 24.
    K.M. Parida, K.H. Reddy, S. Martha, D.P. Das, and N. Biswal, Int. J. Hyd. Energy 35, 12161 (2010).CrossRefGoogle Scholar
  25. 25.
    A.B. Djurišića, Y.H. Leung, and K.H. Tam, Appl. Phys. Lett. 88, 103 (2006).Google Scholar
  26. 26.
    R. Mazumder, S. Ghosh, P. Mondal, D. Bhattacharya, S. Dasgupta, N. Das, and A. Sen, J. Appl. Phys. 100, 1 (2006).CrossRefGoogle Scholar
  27. 27.
    F. Gao, Y. Yuan, K.F. Wang, X.Y. Chen, F. Chen, and J.M. Liu, Appl. Phys. Lett. 89, 102506 (2006).CrossRefGoogle Scholar
  28. 28.
    R. Maiti, S. Basu, and D. Chakravorty, J. Magn. Magn. Mater. 321, 3274 (2009).CrossRefGoogle Scholar
  29. 29.
    J.-S. Zhou, J.A. Alonso, V. Pomjakushin, J.B. Goodenough, Y. Ren, J.-Q. Yan, and J.-G. Cheng, RCrO3. Phys. Rev. B 81, 214115 (2010).CrossRefGoogle Scholar
  30. 30.
    N.N. Toan, S. Saukko, and V. Lantto, Phys. B Cond. Matter 327, 279 (2003).CrossRefGoogle Scholar
  31. 31.
    P. Song, H. Quin, L. Zhang, K. An, Z. Lin, J. Hu, and M. Jiang, Sens. Actuators, B 104, 312 (2005).CrossRefGoogle Scholar
  32. 32.
    E.N. Armstrong, T. Striker, V. Ramaswamy, J.A. Ruud, and E.D. Wachsman, Sens. Actuators, B 158, 159 (2011).CrossRefGoogle Scholar
  33. 33.
    P. Song, Q. Wang, Z. Zhang, and Z. Yang, Sens. Actuators, B 147, 248 (2010).CrossRefGoogle Scholar
  34. 34.
    I. Jaouali, H. Hamrouni, N. Moussa, M.F. Nsib, M.A. Centeno, A. Bonavita, G. Neri, and S.G. Leonardi, Ceram. Int. 44, 4183 (2018).CrossRefGoogle Scholar
  35. 35.
    N. Lavanya, C. Sekar, N. Donato, S. G. Leonardi, and G. Neri, in IEEE International Symposium on Medical Measurements & Applications (MeMeA), IEEE, Rome, Italy (2018).  https://doi.org/10.1109/MeMeA.2018.8438776.
  36. 36.
    A. Mirzaei, S.G. Leonardi, and G. Neri, Ceram. Int. 42, 15119 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceMalayer UniversityMalayerIran
  2. 2.Department of EngineeringUniversity of MessinaMessinaItaly

Personalised recommendations