Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6431–6436 | Cite as

Optimization of Titanium Nitride Film for High Power RF MEMS Applications

  • Prem KumarEmail author
  • Deepak Bansal
  • Anuroop
  • Khushbu Mehta
  • Amit Kumar
  • Kamaljit Rangra
  • Dharmendar Boolchandani
Article
  • 14 Downloads

Abstract

In this paper, TiN film has been deposited and optimized at room temperature for high power radio-frequency microelectromechanical system (RF-MEMS) applications. Being hard, titanium nitride is used in the contact area. The contact material should have low resistance and high hardness. TiN thin films were deposited by DC magnetron reactive sputtering using a four inch high purity titanium target in a nitrogen (N2) environment. X-ray diffraction (XRD) analysis is used to confirm crystal structure and purity of TiN film. The effect of various N2 pressure on resistivity and hardness of TiN thin film is investigated. The resistivity of the film decreases and hardness increases with N2 pressure.

Keywords

Titanium nitride (TiN) DC magnetron reactive sputtering X-ray diffraction (XRD) sheet resistivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thanks CSIR-CEERI, Pilani for providing financial support under MLP-105. The authors would also like to thanks Prof. Anshuman Dalvi from BITS Pilani for XRD results.

References

  1. 1.
    G.M. Rebeiz and R.F.M.E.M.S. Theory, Design, and Technology, 2nd ed. (New Jersey: Wiley, 2003), pp. 1–4.Google Scholar
  2. 2.
    G.M. Rebeiz and J.B. Muldavin, IEEE Microw. Mag. 2, 59 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Kwon, D.-J. Choi, J.-H. Park, H.-C. Lee, Y.-H. Park, Y.-D. Kim, H.-J. Nam, Y.-C. Joo, and J.-U. Bu, IEEE 20th International Conference on Micro Electro Mechanical Systems (2007), pp. 231–234.Google Scholar
  4. 4.
    C.D. Patel, S. Member, and G.M. Rebeiz, IEEE Trans. Microw. Theory Tech. 60, 3096 (2012).CrossRefGoogle Scholar
  5. 5.
    S.T. Patton and J.S. Zabinski, Tribol. Lett. 18, 215 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Majumder, J. Lampen, R.H. Morrison, J. Maciel, and I.E.E.E. Instrum, Meas. Mag. 6, 12 (2003).Google Scholar
  7. 7.
    D. Hyman and M. Mehregany, IEEE Trans. Compon. Packag. Technol. 22, 357 (1999).CrossRefGoogle Scholar
  8. 8.
    A. Broue, J. Dhennin, F. Courtade, C. Dieppedale, P. Pons, X. Lafontan, A. Broue, J. Dhennin, F. Courtade, C. Dieppedale, and P. Pons, J. Micro Nanolithography MEMS MOEMS 9, 041102/1 (2011).Google Scholar
  9. 9.
    L. Chen, H. Lee, Z.J. Guo, N.E. McGruer, K.W. Gilbert, S. Mall, K.D. Leedy, and G.G. Adams, J. Appl. Phys. 102, 074910 (2007).CrossRefGoogle Scholar
  10. 10.
    C.D. Patel and G.M. Rebeiz, IEEE MTTS International Microwave Symposium (2012), pp. 1–3.Google Scholar
  11. 11.
    E.M. Yunus, J.W. Mcbride, and S.M. Spearing, IEEE Trans. Compon. Packag. Technol. 32, 650 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Broue, J. Dhennin, P. Charvet, F. Courtade, P. Heeb, P. Pons, and R. Plana, Symposium on DTIP of MEMS/MOEMS (2010), pp. 397–402.Google Scholar
  13. 13.
    S.H. Kim, H. Park, K.H. Lee, S.H. Jee, D.J. Kim, Y.S. Yoon, and H.B. Chae, J. Ceram. Process. Res. 10, 49 (2009).Google Scholar
  14. 14.
    N.K. Ponon, D.J.R. Appleby, E. Arac, P.J. King, S. Ganti, K.S.K. Kwa, and A. O’Neill, Thin Solid Films 578, 31 (2015).CrossRefGoogle Scholar
  15. 15.
    F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Méndez, J.A. Mendes, E. Alves, P. Goudeau, J.P. Rivière, F. Ribeiro, I. Moutinho, K. Pischow, and J. de Rijk, Surf. Coat. Technol. 191, 317 (2005).CrossRefGoogle Scholar
  16. 16.
    Y.L. Jeyachandran, S.K. Narayandass, D. Mangalaraj, S. Areva, and J.A. Mielczarski, Mater. Sci. Eng. A 445–446, 223 (2007).CrossRefGoogle Scholar
  17. 17.
    K. Rangra, B. Margesin, L. Lorenzelli, F. Giacomozzi, C. Collini, M. Zen, G. Soncini, L. Del Tin, and R. Gaddi, Sensors Actuators A 123–124, 505 (2005).CrossRefGoogle Scholar
  18. 18.
    D. Bansal, A. Kumar, A. Sharma, P. Kumar, and K.J. Rangra, Microsyst. Technol. 20, 337 (2014).CrossRefGoogle Scholar
  19. 19.
    D. Bansal, A. Bajpai, P. Kumar, M. Kaur, A. Kumar, A. Chandran, and K. Rangra, J. Micromech. Microeng. 27, 1 (2017).CrossRefGoogle Scholar
  20. 20.
    U. Balachandran, N.G. Eror, and R. Mammone, J. Solid State Chem. 42, 276 (1982).CrossRefGoogle Scholar
  21. 21.
    L. Meng and M.P. Santos, Thin Solid Films 226, 22 (1993).CrossRefGoogle Scholar
  22. 22.
    N. Erina, S. Kaemmer, and B. Chunzeng, Nanoscope Multimode 8 AFM Manual (Santa Barbara: Bruker Nano Surfaces Division, 2012), pp. 215–235.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.CSIR- Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.Malaviya National Institute of TechnologyJaipurIndia

Personalised recommendations