Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6460–6469 | Cite as

Enhancing the Ferroelectric Coupling of Multifunctional Spinel–Perovskite Composite

  • A. A. AzabEmail author
  • E. H. El-Khawas
  • M. H. Abdellatif
Article
  • 26 Downloads

Abstract

Multifunctional composites of spinel and perovskite of the general formula (x)(Mn0.7Cu0.3Fe2O4) + (1 − x)(La0.90Bi0.10FeO3), were prepared using the auto combustion sol–gel technique. We studied the dielectric behavior of the composites and their effect on the multiferroic property of the pristine perovskites. We further characterized the composite with an ac conductivity measurement; two regions of conductivity appears in all different composite concentrations. The microstructure of the composite has also been investigated using a high-resolution transmission electron microscope. The results of the composite’s dielectric behavior and the ac conductivity shows that the electric polarization is enhanced due to the built up electric field in the grain boundaries, the built-up electric field adds additional electric polarization that increases the multiferroic coupling in the perovskite.

Keywords

Spinel ferrite perovskite nanocomposite AC conductivity dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    A. Pimenov, A.A. Mukhin, V.Y. Ivanov, V.D. Travkin, A.M. Balbashov, and A. Loidl, Nat. Phys. 2, 97 (2006).CrossRefGoogle Scholar
  2. 2.
    Y. Wang and C.-W. Nan, Appl. Phys. Lett. 89, 052903 (2006).CrossRefGoogle Scholar
  3. 3.
    O. Auciello and J. Engemann, eds., Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques, Fundamentals and Devices (Dordrecht: Springer, 1993).Google Scholar
  4. 4.
    D.I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).CrossRefGoogle Scholar
  5. 5.
    F. Yan, T.J. Zhu, M.O. Lai, and L. Lu, J. Appl. Phys. 110, 114116 (2011).CrossRefGoogle Scholar
  6. 6.
    H. Schmid, J. Phys. Condens. Matter 20, 434201 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Wei, X. Wang, J. Jia, and X. Wang, Ceram. Int. 38, 3499 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Abdellatif and A. Moustafa, Ferrites, Theory and Applications (Riga: LAP LAMPERT Academic Publishing, 2017).Google Scholar
  9. 9.
    M.H. Abdellatif and J. Lee, Optical Study of Nanostructured Semiconductor Materials, by Mohamed Abdellatif, Jungil Lee, 1st ed. (Scholar Press, 2016).Google Scholar
  10. 10.
    M.H. Abdellatif, C. Innocenti, I. Liakos, A. Scarpellini, S. Marras, and M. Salerno, J. Magn. Magn. Mater. 424, 402 (2017).CrossRefGoogle Scholar
  11. 11.
    M.H. Abdellatif, G.M. El-Komy, A.A. Azab, and A.M. Moustafa, Mater. Res. Express 4, 076410 (2017).CrossRefGoogle Scholar
  12. 12.
    L.M. Salah, A.F. Mabied, and M.H. Abdellatif, J. Magn. Magn. Mater. 458, 10 (2018).CrossRefGoogle Scholar
  13. 13.
    M.A. Ahmed, S.F. Mansour, S.I. El-Dek, and M. Abu-Abdeen, Mater. Res. Bull. 49, 352 (2014).CrossRefGoogle Scholar
  14. 14.
    Z. Li, S. Wu, F. Shao, Q. Liu, Y. Ji, K. Meng, X. Xu, Y. Wu, J. Miao, and Y. Jiang, J. Alloys Compd. 660, 125 (2016).CrossRefGoogle Scholar
  15. 15.
    T. Wang, T. Xu, S. Gao, and S.-H. Song, Ceram. Int. 43, 4489 (2017).CrossRefGoogle Scholar
  16. 16.
    J.S. Hwang, J.Y. Cho, S.Y. Park, Y.J. Yoo, P.S. Yoo, B.W. Lee, and Y.P. Lee, Appl. Phys. Lett. 106, 062902 (2015).CrossRefGoogle Scholar
  17. 17.
    M.H. Abdellatif, J.D. Song, W.J. Choi, and N.K. Cho, J. Nanosci. Nanotechnol. 12, 5774 (2012).CrossRefGoogle Scholar
  18. 18.
    H. Schmid, Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
  19. 19.
    W. Eerenstein, N.D. Mathur, and J.F. Scott, Nature 442, 759 (2006).CrossRefGoogle Scholar
  20. 20.
    C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).CrossRefGoogle Scholar
  21. 21.
    M.H. Abdellatif, A.A. Azab, and M. Salerno, Mater. Res. Bull. 97, 260 (2018).CrossRefGoogle Scholar
  22. 22.
    M.H. Abdellatif, G.M. El-Komy, A.A. Azab, and M. Salerno, J. Magn. Magn. Mater. 447, 15 (2018).CrossRefGoogle Scholar
  23. 23.
    V.D. de Oliveira, R.M. Rubinger, M.R. da Silva, A.F. Oliveira, G. Rodrigues, V.A.S. dos Ribeiro, V.D. de Oliveira, R.M. Rubinger, M.R. da Silva, A.F. Oliveira, G. Rodrigues, and V.A.S. dos Ribeiro, Mater. Res. 19, 786 (2016).Google Scholar
  24. 24.
    M.U. Rana, Misbah-ul-Islam, and T. Abbas, Solid State Commun. 126, 129 (2003).Google Scholar
  25. 25.
    A.A. Azab and E.H. El-Khawas, J. Appl. Sci. Res. 9, 1683 (2013).Google Scholar
  26. 26.
    K. Sen, K. Singh, A. Gautam, and M. Singh, Ceram. Int. 38, 243 (2012).CrossRefGoogle Scholar
  27. 27.
    T.T. Carvalho, J.R.A. Fernandes, J. Perez de la Cruz, J.V. Vidal, N.A. Sobolev, F. Figueiras, S. Das, V.S. Amaral, A. Almeida, J. Agostinho Moreira, and P.B. Tavares, J. Alloys Compd. 554, 97 (2013).Google Scholar
  28. 28.
    R.G. Kulkarni and V.U. Patil, J. Mater. Sci. 15, 2221 (1980).CrossRefGoogle Scholar
  29. 29.
    K.Y. Yun, M. Noda, M. Okuyama, H. Saeki, H. Tabata, and K. Saito, J. Appl. Phys. 96, 3399 (2004).CrossRefGoogle Scholar
  30. 30.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).CrossRefGoogle Scholar
  31. 31.
    M.A. Ahmed, A.A. Azab, and E.H. El-Khawas, J. Mater. Sci. Mater. Electron. 26, 8765 (2015).CrossRefGoogle Scholar
  32. 32.
    M.A. Ahmed, A.A. Azab, E.H. El-Khawas, and E.A. El Bast, Synth. React. Inorganic, Met. Nano-Metal Chem. 46, 376 (2016).Google Scholar
  33. 33.
    S. Thayumanasundaram, V.S. Rangasamy, N. De Greef, J.W. Seo, and J.-P. Locquet, Eur. J. Inorg. Chem. 2015, 1290 (2015).CrossRefGoogle Scholar
  34. 34.
    A.A. Azab and S. Albaaj, J. Ovonic Res. 11, 195 (2015).Google Scholar
  35. 35.
    P. Tang, Y. Tong, H. Chen, F. Cao, and G. Pan, Curr. Appl. Phys. 13, 340 (2013).CrossRefGoogle Scholar
  36. 36.
    B. Labde, M.C. Sable, and N. Shamkuwar, Mater. Lett. 57, 1651 (2003).CrossRefGoogle Scholar
  37. 37.
    S. Patil, V. Mahajan, A. Ghatage, and S. Lotke, Mater. Chem. Phys. 57, 86 (1998).CrossRefGoogle Scholar
  38. 38.
    M.A. Ahmed, H.H. Afify, I.K. El Zawawia, and A.A. Azab, J. Magn. Magn. Mater. 324, 2199 (2012).CrossRefGoogle Scholar
  39. 39.
    P.V. Gosavi and R.B. Biniwale, Mater. Chem. Phys. 119, 324 (2010).CrossRefGoogle Scholar
  40. 40.
    N.T. Thuy and D. Le Minh, Adv. Mater. Sci. Eng. 2012, 1 (2012).CrossRefGoogle Scholar
  41. 41.
    X. He and L. Gao, Ceram. Int. 35, 975 (2009).CrossRefGoogle Scholar
  42. 42.
    S. Ghosh, S. Dasgupta, A. Sen, and H. Sekhar Maiti, J. Am. Ceram. Soc. 88, 1349 (2005).Google Scholar
  43. 43.
    S. Sharma, V. Singh, R.K. Kotnala, and R.K. Dwivedi, J. Mater. Sci. Mater. Electron. 25, 1915 (2014).CrossRefGoogle Scholar
  44. 44.
    M. Hasan, M.F. Islam, R. Mahbub, M.S. Hossain, and M.A. Hakim, Mater. Res. Bull. 73, 179 (2016).CrossRefGoogle Scholar
  45. 45.
    R. Sankar Ganesh, S.K. Sharma, S. Sankar, B. Divyapriya, E. Durgadevi, P. Raji, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa, and D.Y. Kim, Curr. Appl. Phys. 17, 409 (2017).Google Scholar
  46. 46.
    A.K. Jonscher, J. Mater. Sci. 16, 2037 (1981).CrossRefGoogle Scholar
  47. 47.
    T.A. Taha and A.A. Azab, J. Electron. Mater. 45, 5170 (2016).CrossRefGoogle Scholar
  48. 48.
    M.H. Abdellatif, A.A. Azab, and A.M. Moustafa, J. Electron. Mater. 47, 378 (2018).CrossRefGoogle Scholar
  49. 49.
    H.E. Atyia and N.A. Hegab, Optik (Stuttg). 127, 6232 (2016).CrossRefGoogle Scholar
  50. 50.
    M.M. Mallapur, P.A. Shaikh, R.C. Kambale, H.V. Jamadar, P.U. Mahamuni, and B.K. Chougule, J. Alloys Compd. 479, 797 (2009).CrossRefGoogle Scholar
  51. 51.
    K. Funke, Prog. Solid State Chem. 22, 111 (1993).CrossRefGoogle Scholar
  52. 52.
    R.S. Periathai, S. Abarna, G. Hirankumar, N. Jeyakumaran, and N. Prithivikumaran, Phys. B Condens. Matter 509, 62 (2017).CrossRefGoogle Scholar
  53. 53.
    S. Karthickprabhu, G. Hirankumar, A. Maheswaran, R.S. Daries Bella, and C. Sanjeeviraja, J. Electrostat. 72, 181 (2014).Google Scholar
  54. 54.
    G. Dascalu, T. Popescu, M. Feder, and O.F. Caltun, J. Magn. Magn. Mater. 333, 69 (2013).CrossRefGoogle Scholar
  55. 55.
    N. Kumari, A. Ghosh, and A. Bhattacharjee, Indian J. Phys. 88, 1059 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Research Division, Solid State Physics DepartmentNational Research CentreGizaEgypt
  2. 2.Basic Science DepartmentHigher Technological InstituteTenth of Ramadan CityEgypt

Personalised recommendations