Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6354–6358 | Cite as

Structure and Enhanced Dielectric Properties of B and Sr Modified CaCu3Ti4O12 Ceramics

  • Hua Qiang
  • Zunping XuEmail author
Article
  • 18 Downloads

Abstract

B doped CaCu3Ti4O12 (CCTO), Sr doped CCTO and (B + Sr) co-doped CCTO ceramics were synthesized using the citrate precursor process and were sintered at 1080°C for 3 h. The effects of B and/or Sr doping on dielectric properties, Raman spectra and resistance were studied. Raman results corroborate with the results of x-ray diffraction, and Raman spectra show a multiphonon phenomenon. The pure CCTO phase can be obtained by citrate precursor processing and a short sintering time. The micrographs reveal that B and Sr additions can speed the grain growth, and a dense and homogenous microstructure was obtained for B and Sr co-doped ceramic. The addition of B and Sr can increase the grain boundary resistance and enhance dielectric properties with dielectric constant of 12108 and dielectric loss of 0.044 at 10 kHz. Moreover, B and Sr additions can enhance the frequency stability (between 100 Hz and 50 kHz) and temperature stability (between 20°C and 100°C) of dielectric loss. The present results show that the microstructure characteristics and grain boundary response are the primary factors in improving the dielectric properties of CCTO ceramics.

Keywords

CaCu3Ti4O12 ceramics microstructure dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    J. Im, O. Auciello, P.K. Baumann, and S.K. Striffer, Appl. Phys. Lett. 76, 625 (2000).CrossRefGoogle Scholar
  2. 2.
    H. Qiang and Z. Xu, J. Mater. Sci. Mater. Electron. 27, 9976 (2016).CrossRefGoogle Scholar
  3. 3.
    Z. Li, J. Wu, D. Xiao, J. Zhu, and W. Wu, Acta Mater. 103, 243 (2016).CrossRefGoogle Scholar
  4. 4.
    X. Cheng, Z. Li, and J. Wu, J. Mater. Chem. A 3, 5805 (2015).CrossRefGoogle Scholar
  5. 5.
    C. Zhao, Z. Li, and J. Wu, J. Mater. Chem. C 7, 4235 (2019).CrossRefGoogle Scholar
  6. 6.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, and A.W. Sleight, J. Solid State Chem. 151, 323 (2000).CrossRefGoogle Scholar
  7. 7.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, and A.P. Ramirez, Science 293, 673 (2001).CrossRefGoogle Scholar
  8. 8.
    R. Xue, D. Liu, Z. Chen, H. Dai, J. Chen, and G. Zhao, J. Electron. Mater. 44, 1088 (2015).CrossRefGoogle Scholar
  9. 9.
    P. Xu, M. Wang, S. Yang, Y. Wang, W. Hao, L. Sun, E. Cao, and Y. Zhang, J. Electron. Mater. 47, 5582 (2018).CrossRefGoogle Scholar
  10. 10.
    X. Ouyang, P. Cao, S. Huang, W. Zhang, Z. Huang, and W. Gao, J. Electron. Mater. 44, 2243 (2015).CrossRefGoogle Scholar
  11. 11.
    P. Lunkenheimer, V. Bobnar, A.V. Pronin, A.I. Ritus, A.A. Volkov, and A. Loidi, Phys. Rev. B 66, 52105 (2002).CrossRefGoogle Scholar
  12. 12.
    T.B. Adams, D.C. Sinclair, and A.R. West, Phys. Rev. B 73, 094124 (2006).CrossRefGoogle Scholar
  13. 13.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).CrossRefGoogle Scholar
  14. 14.
    Y. Li, W. Li, G. Du, and N. Chen, Ceram. Int. 43, 9178 (2017).CrossRefGoogle Scholar
  15. 15.
    X. Huang, H. Zhang, M. Wei, Y. Lai, and J. Li, J. Alloys Compd. 708, 1026 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Rhouma, S. Saîd, C. Autret, S.D. Almeida-Didry, M.E. Amrani, and A. Megriche, J. Alloys Compd. 71, 121 (2017).CrossRefGoogle Scholar
  17. 17.
    D.Y. Lu, X.Y. Yu, and J.W. Liu, Ceram. Int. 43, 8664 (2017).CrossRefGoogle Scholar
  18. 18.
    Z. Xu, H. Qiang, and J. Sol-Gel, Sci. Technol. 77, 650 (2016).Google Scholar
  19. 19.
    S.D. Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, and F. Gervais, J. Eur. Ceram. Soc. 34, 3649 (2014).CrossRefGoogle Scholar
  20. 20.
    Z. Xu, H. Qiang, Y. Chen, and Z. Chen, Mater. Chem. Phys. 191, 1 (2017).CrossRefGoogle Scholar
  21. 21.
    L. Sun, Z. Wang, W.T. Hao, E.S. Cao, Y.J. Zhang, and H. Peng, J. Alloys Compd. 651, 283 (2015).CrossRefGoogle Scholar
  22. 22.
    Z. Xu and H. Qiang, J. Mater. Sci. Mater. Electron. 28, 376 (2017).CrossRefGoogle Scholar
  23. 23.
    M.V. Klein and S.P.S. Porto, Phys. Rev. Lett. 22, 782 (1969).CrossRefGoogle Scholar
  24. 24.
    T. Das, B.K. Das, K. Parashar, R. Kumar, H.K. Choudhary, A.V. Anupama, B. Sahoo, P.K. Sahoo, and S.K.S. Parashar, J. Mater. Sci. Mater. Electron. 28, 13587 (2017).CrossRefGoogle Scholar
  25. 25.
    Z. Xu, H. Qiang, Z. Chen, and Y. Chen, J. Mater. Sci. Mater. Electron. 26, 578 (2015).CrossRefGoogle Scholar
  26. 26.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, and A.R. West, Appl. Phys. Lett. 80, 2153 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Chongqing College of Humanities, Science and TechnologyChongqingChina
  2. 2.School of Materials and EnergySouthwest UniversityChongqingChina

Personalised recommendations