Advertisement

Journal of Electronic Materials

, Volume 48, Issue 10, pp 6521–6528 | Cite as

Electronic and Optical Response of Chalcopyrites Cu2InMSe4 (M = Al, Ga): First Principles Investigation for Use in Solar Cells

  • Jagrati Sahariya
  • Ushma Ahuja
  • Amit SoniEmail author
Article
  • 12 Downloads

Abstract

We report systematic investigations of opto-electronic behavior of promising semiconducting chalcopyrite compounds Cu2In(Al,Ga)Se4 within the framework of density functional theory. In view to explore their possible utilization in opto-electronic devices, we have firstly performed calculations using one of the most accurate prescriptions, namely full-potential linearized augmented plane wave method. For a better accuracy, computations have been carried out using different exchange–correlation potentials including the most accurate modified Becke–Johnson potential with hybrid functional features. Computations have been performed for various electronic and optical properties such as energy bands, total and partial density of states, real and imaginary parts of dielectric tensors, absorption spectra, reflection, refraction and energy loss spectra for both chalcopyrite compounds. We have compared our data with the existing experimental and theoretical calculations for both compounds, which validates the accuracy of present computations. Both chalcopyrites are observed to have a direct band gap nature (Cu2InAlSe4: 1.14 eV and Cu2InGaSe4: 0.96 eV). Energy peaks recorded in the imaginary part of dielectric tensors are well interpreted by means of inter-band transitions. Significant intensities observed in absorption spectra within the energy range of solar spectra unambiguously depict feasibility of these compounds in optoelectronic devices.

Keywords

Density functional theory semiconductor chalcopyrites optical properties solar cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Prof. P. Blaha of the Vienna University group for providing the Wien2k code. Present work is financially supported by DSTSERB, New Delhi (India), vide core research Grant Number EMR/2017/005534.

References

  1. 1.
    S. Manju and N. Sagar, Renew. Sustain. Energy Rev. 73, 594 (2017).CrossRefGoogle Scholar
  2. 2.
    A. Shahsavari and M. Akbari, Renew. Sustain. Energy Rev. 90, 275 (2018).CrossRefGoogle Scholar
  3. 3.
    A. Belghachi and N. Limam, Chin. J. Phys. 55, 1127 (2017).CrossRefGoogle Scholar
  4. 4.
    L. Manfredy, O.P. Marquez, S.A. Lopez-Rivera, J. Marquez, Y. Martínez, and D.A. Miranda, J. Phys. Conf. Ser. 687, 012038 (2016).CrossRefGoogle Scholar
  5. 5.
    K. Shen, H. Lu, X. Zhang, and Z. Jiao, Results Phys. 9, 49 (2018).CrossRefGoogle Scholar
  6. 6.
    H. Matsushita, T. Maeda, A. Katsui, and T. Takizawa, J. Cryst. Growth 208, 416 (2000).CrossRefGoogle Scholar
  7. 7.
    H. Katagiri, Thin Solid Films 480, 426 (2005).CrossRefGoogle Scholar
  8. 8.
    K. Jimbo, R. Kimura, T. Kamimura, S. Yamada, W.S. Maw, H. Araki, K. Oishi, and H. Katagiri, Thin Solid Films 515, 5997 (2007).CrossRefGoogle Scholar
  9. 9.
    R.A. Wibowo, E. Soo-Lee, B. Munir, and K. Ho-Kim, Phys. Stat. Sol. A 204, 3373 (2007).CrossRefGoogle Scholar
  10. 10.
    J.J. Scragg, P.J. Dale, L.M. Peter, G. Zoppi, and I. Forbes, Phys. Stat. Sol. B 245, 1772 (2008).CrossRefGoogle Scholar
  11. 11.
    D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S. Jay-Chey, V. Deline, and A.G. Schrott, Adv. Mater. 20, 3657 (2008).CrossRefGoogle Scholar
  12. 12.
    Y.K. Kumar, G.S. Babu, P.U. Bhaskar, and V.S. Raja, Sol. Energy Mater. Sol. Cells 93, 1230 (2009).CrossRefGoogle Scholar
  13. 13.
    L. Wahab, M. El-Den, A. Farrag, S. Fayek, and K. Marzouk, J. Phys. Chem. Solids 70, 604 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Yuan, D.B. Mitzi, W. Liu, A.J. Kellock, S. Jay-Chey, and V. Deline, Chem. Mater. 22, 285 (2010).CrossRefGoogle Scholar
  15. 15.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. Res. Appl. 19, 894 (2011).CrossRefGoogle Scholar
  16. 16.
    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, and S.M. Huang, Prog. Photovolt. Res. Appl. 19, 160 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Mishra, Ph.D. Thesis, Department of Physics, NIT Rourkela, 2012, (unpublished).Google Scholar
  18. 18.
    S. Mohammad-Nejad and A.B. Parashkouh, Appl. Phys. A 123, 758 (2017).CrossRefGoogle Scholar
  19. 19.
    Y.C. Lin, J.T. Huang, L.C. Wang, and H.R. Hsu, J. Alloys Compd. 690, 152 (2017).CrossRefGoogle Scholar
  20. 20.
    G.K.H. Madsen, P. Blaha, K. Schwarz, E.S. Stedt, and L. Nordstrom, Phys. Rev. B 64, 195134 (2001).CrossRefGoogle Scholar
  21. 21.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  22. 22.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka and J. Luitz, Wien2K Code, An augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Vienna, Austria (2016).Google Scholar
  23. 23.
    Z. Wu and R.E. Cohen, Phys. Rev. B 73, 235116 (2006).CrossRefGoogle Scholar
  24. 24.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).CrossRefGoogle Scholar
  25. 25.
    F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).CrossRefGoogle Scholar
  26. 26.
    A. Yakoubi, O. Baraka, and B. Bouhaf, Results Phys. 2, 58–65 (2012).CrossRefGoogle Scholar
  27. 27.
    T. Maeda, S. Nakamura, and T. Wada, Jpn. J. Appl. Phys. 50, 04DP071-6 (2011).CrossRefGoogle Scholar
  28. 28.
    J.S. Jang, P.H. Borse, J.S. Lee, S.H. Choi, and H.G. Kim, J. Chem. Phys. 128, 154717 (2008).CrossRefGoogle Scholar
  29. 29.
    K. Tang, S. Gu, J. Liu, J. Ye, S. Zhu, and Y. Zheng, J. Alloys Compd. 653, 643 (2015).CrossRefGoogle Scholar
  30. 30.
    Z. Xiao, H. Luan, R. Liu, B. Yao, Y. Li, Z. Ding, G. Yang, R. Deng, G. Wang, Z. Zhang, L. Zhang, and H. Zhao, J. Alloys Compd. 767, 439 (2018).CrossRefGoogle Scholar
  31. 31.
    M.W. Haimbodi, E. Gourmelon, P.D. Paulson, R.W. Birkmire and W.N. Shafarman, Proceedings of the 28th IEEE Photovoltaic Specialists Conference 454 (2000).Google Scholar
  32. 32.
    M. Gloeckler and J.R. Sites, J. Phys. Chem. Solids 66, 1891 (2005).CrossRefGoogle Scholar
  33. 33.
    D.R. Penn, Phys. Rev. 128, 2093 (1962).CrossRefGoogle Scholar
  34. 34.
    U. Ahuja, A. Dashora, H. Tiwari, D.C. Kothari, and K. Venugopalan, Comput. Mater. Sci. 92, 451 (2014).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Sciences and HumanitiesNational Institute of Technology, UttarakhandSrinagar, GarhwalIndia
  2. 2.Department of Electrical Engineering, NMIMSMukesh Patel School of Technology Management and EngineeringMumbaiIndia
  3. 3.Department of Electrical EngineeringManipal University JaipurJaipurIndia

Personalised recommendations