Journal of Electronic Materials

, Volume 48, Issue 10, pp 6347–6353 | Cite as

Computational Studies on Structural and Electronic Properties of NiCo2S4 (001)/KOH Electrolyte Interface

  • Hui Hui Hu
  • Kun Peng Dou
  • Guang YuanEmail author
  • Wen LeiEmail author


In this work, we present a study on the atomic details and the electronic structure of the NiCo2S4/KOH electrolyte interface via first-principles calculation. Both Ni-terminated and CoS2-terminated NiCo2S4 (001) surfaces are studied in order to understand the electronic structure of the interface and surface reactivity. The surface free energy indicates that the Ni-capped NiCo2S4 (001) surface is more stable than the CoS2-capped one. Upon adsorption, KOH received more electrons (0.1e) from the latter surface than from the former and the planar average differential charge density indicates that a larger electric dipole forms in CoS2-terminated NiCo2S4/KOH interface. These analyses prove that the CoS2-terminated NiCo2S4 (001) surface presents a stronger affinity for OH in the electrolyte, which leads to the enhanced electrochemical performance. These results will not only contribute to a better understanding of the fundamental knowledge of the NiCo2S4/KOH electrolyte interface, but also provide a guidance as to enhance the electrochemical activity of NiCo2S4 materials, which will benefit the ultimate application of NiCo2S4 (001) as electrode material for electrochemical energy storage.


NiCo2S4/KOH electrolyte interface adsorption geometry electronic structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China under Grant (Nos. 41076057, 41476082), China Postdoctoral Science Foundation (Grant No. 2017M612348) and project from Ocean University of China (Grant No. 3002000-861701013151).


  1. 1.
    C.Z. Wei, N.N. Zhan, J. Tao, S.S. Pang, L.P. Zhang, C. Cheng, and D.J. Zhang, Appl. Surf. Sci. 453, 288 (2018).CrossRefGoogle Scholar
  2. 2.
    C. Liu and X. Wu, Mater. Res. Bull. 103, 55 (2018).CrossRefGoogle Scholar
  3. 3.
    T. Xiao, J. Li, X.Y. Zhuang, W. Zhang, S.L. Wang, X.L. Chen, P. Xiang, L.H. Jiang, and X.Y. Tan, Electrochim. Acta 269, 397 (2018).CrossRefGoogle Scholar
  4. 4.
    J. Yang, C. Yu, X.M. Fan, S.X. Liang, S.F. Li, H.W. Huang, Z. Ling, C. Hao, and J.S. Qiu, Energy Environ. Sci. 9, 1299 (2016).CrossRefGoogle Scholar
  5. 5.
    T.B. He, S.L. Wang, F.X. Lu, M.C. Zhang, X. Zhang, and L. Xu, RSC Adv. 6, 97352 (2016).CrossRefGoogle Scholar
  6. 6.
    H.C. Chen, J.J. Jiang, L. Zhang, D.D. Xia, Y.D. Zhao, D.Q. Guo, T. Qi, and H.Z. Wan, J. Power Sources 254, 249 (2014).CrossRefGoogle Scholar
  7. 7.
    H.Z. Wan, J.J. Jiang, J.W. Yu, K. Xu, L. Miao, L. Zhang, H.C. Chen, and Y.J. Ruan, CrystEngComm 15, 7649 (2013).CrossRefGoogle Scholar
  8. 8.
    Y.X. Wen, S.L. Peng, Z.L. Wang, J.X. Hao, T.F. Qin, S.Q. Lu, J.C. Zhang, D.Y. He, X.Y. Fan, and G.Z. Cao, J. Mater. Chem. A 5, 7144 (2017).CrossRefGoogle Scholar
  9. 9.
    X.H. Lu, M.H. Yu, G.M. Wang, Y.X. Tong, and Y. Li, Energy Environ. Sci. 7, 2160 (2014).CrossRefGoogle Scholar
  10. 10.
    Z.Q. Chai, Z.X. Wang, J.X. Wang, X.H. Li, and H.J. Guo, Ceram. Int. 44, 15778 (2018).CrossRefGoogle Scholar
  11. 11.
    Y.S. Wu, X.J. Liu, D.D. Han, X.Y. Song, L. Shi, Y. Song, S.W. Niu, Y.F. Xie, J.Y. Cai, and S.Y. Wu, Nat. Commun. 9, 1425 (2018).CrossRefGoogle Scholar
  12. 12.
    J. Liu, J.S. Wang, B. Zhang, Y.J. Ruan, L. Lv, X. Ji, K. Xu, L. Miao, and J.J. Jiang, ACS Appl. Mater. Interfaces 9, 15364 (2017).CrossRefGoogle Scholar
  13. 13.
    D.N. Liu, Q. Lu, Y.L. Luo, X.P. Sun, and A.M. Asiri, Nanoscale 7, 15122 (2015).CrossRefGoogle Scholar
  14. 14.
    Q. Liu, J.T. Jin, and J.Y. Zhang, ACS Appl. Mater. Interfaces 5, 5002 (2013).CrossRefGoogle Scholar
  15. 15.
    J.Y. Lin and S.W. Chou, Electrochem. Commun. 37, 11 (2013).CrossRefGoogle Scholar
  16. 16.
    J.W. Xiao, X.W. Zeng, W. Chen, F. Xiao, and S. Wang, Chem. Commun. 49, 11734 (2013).CrossRefGoogle Scholar
  17. 17.
    C. Xia, P. Li, A.N. Gandi, U. Schwingenschlogl, and H.N. Alshareef, Chem. Mater. 27, 6482 (2015).CrossRefGoogle Scholar
  18. 18.
    O. Knop, K.I.G. Reid, Sutarno, and Y. Nakagawa, Can. J. Chem. 46, 3463 (1968).CrossRefGoogle Scholar
  19. 19.
    A. Candan and G. Uğur, Mod. Phys. Lett. B 30, 16500020 (2016).CrossRefGoogle Scholar
  20. 20.
    A. Manzar, G. Murtaza, R. Khenata, and S. Muhammad, Chin. Phys. Lett. 30, 127401 (2013).CrossRefGoogle Scholar
  21. 21.
    H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu, Nature 453, 638 (2008).CrossRefGoogle Scholar
  22. 22.
    H.H. Alkam, K.M. Kanan, and C.C. Hadjikostas, Polyhedron 24, 2944 (2005).CrossRefGoogle Scholar
  23. 23.
    G.D. Gatta, G.J. McIntyre, R. Sassi, N. Rotiroti, and A. Pavese, Am. Mineral. 96, 34 (2010).CrossRefGoogle Scholar
  24. 24.
    W. Carrillo-Cabrera, J. Saßmannshausen, H.G. von Schnering, F. Menzel, and W. Brockner, Z. Anorg. Allg. Chem. 620, 489 (1994).CrossRefGoogle Scholar
  25. 25.
    S. Grimme, J. Comput. Chem. 25, 1463 (2004).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Information Science and EngineeringOcean University of ChinaQingdaoChina
  2. 2.Department of Electrical, Electronic and Computer EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations