Journal of Electronic Materials

, Volume 48, Issue 10, pp 6216–6221 | Cite as

The Large and Tunable Nonlinear Absorption Response of Graphene Oxide Liquid Crystals

  • Shirin Changaei
  • Javid Zamir-Anvari
  • Najme-Sadat Heydari
  • Sara Ghayeb Zamharir
  • Maghsood Arshadi
  • Bahram Bahrami
  • Jalal Rouhi
  • Rouhollah KarimzadehEmail author


In this work, we report on the tuning of the optical transmission properties of the graphene oxide liquid crystal. The proposed tuning method is obtained by irradiating the liquid crystal samples with 532-nm laser irradiation. For this purpose, liquid crystallinity of the graphene oxide is proved by the birefringence measurement method. Large nonlinear absorption has been observed from graphene oxide liquid crystals. Open-aperture Z-scan experiments revealed that the laser irradiation enhanced the nonlinear absorption coefficient by approximately five times in comparison with non-irradiated sample. UV–visible, Raman and Fourier transform infrared spectroscopy clearly demonstrate that graphene oxide liquid crystal is not modified by laser irradiation. This work opened up the method to control and amplify the absorption properties of graphene oxide liquid crystal.


Graphene oxide liquid crystals laser irradiation nonlinear absorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Supplementary material

Supplementary material 1 (MP4 24391 kb)


  1. 1.
    R.R. Shah and N.L. Abbott, Science 293, 1296 (2001).CrossRefGoogle Scholar
  2. 2.
    I.-H. Lin, D.S. Miller, P.J. Bertics, C.J. Murphy, J.J. de Pablo, and N.L. Abbott, Science 332, 1297 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Humar and I. Musevic, Opt. Express 19, 19836 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Sengupta, U. Tkalec, and C. Bahr, Soft Matter 7, 6542 (2011).CrossRefGoogle Scholar
  5. 5.
    D. Psaltis, S.R. Quake, and C. Yang, Nature 442, 381 (2006).CrossRefGoogle Scholar
  6. 6.
    J.G. Cuennet, A.E. Vasdekis, L. De Sio, and D. Psaltis, Nat. Photonics 5, 234 (2011).CrossRefGoogle Scholar
  7. 7.
    D.K. Yang and S.T. Wu, Fundamentals of Liquid Crystal Devices (New York: Wiley, 2006).CrossRefGoogle Scholar
  8. 8.
    I.C. Khoo, Phys. Rep. 471, 221 (2009).CrossRefGoogle Scholar
  9. 9.
    Y. Liu, Y. Wu, C.-W. Chen, J. Zhou, T.-H. Lin, and I.C. Khoo, Opt. Express 24, 10458 (2016).CrossRefGoogle Scholar
  10. 10.
    A. Gowda, L. Jacob, N. Joy, R. Philip, R. Pratibha, and S. Kumar, New J. Chem. 42, 2047 (2018).CrossRefGoogle Scholar
  11. 11.
    X. Wang, Y. Mi, D. Wang, W. He, H. Cao, and H. Yang, Mol. Cryst. Liq. Cryst. 630, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    W. Zhang, L. Zhang, X. Liang, L. Zhou, J. Xiao, L. Yu, F. Li, H. Cao, K. Li, Z. Yang, and H. Yang, Sci. Rep. 7, 1 (2017).CrossRefGoogle Scholar
  13. 13.
    B.T. Hogan, E. Kovalska, M.F. Craciun, and A. Baldycheva, J. Mater. Chem. C 5, 11185 (2017).CrossRefGoogle Scholar
  14. 14.
    V.A. Davis, A.N.G. Parra-Vasquez, M.J. Green, P.K. Rai, N. Behabtu, V. Prieto, R.D. Booker, J. Schmidt, E. Kesselman, W. Zhou, H. Fan, W.W. Adams, R.H. Hauge, J.E. Fischer, Y. Cohen, Y. Talmon, R.E. Smalley, and M. Pasquali, Nat. Nanotechnol. 4, 830 (2009).CrossRefGoogle Scholar
  15. 15.
    L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W.-F. Hwang, R.H. Hauge, J.E. Fischer, and R.E. Smalley, Science 305, 1447 (2004).CrossRefGoogle Scholar
  16. 16.
    L.-S. Li, J. Walda, L. Manna, and A.P. Alivisatos, Nano Lett. 2, 557 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Gupta, Q. Zhang, T. Emrick, and T.P. Russell, Nano Lett. 6, 2066 (2006).CrossRefGoogle Scholar
  18. 18.
    I. Dierking and S. Al-Zangana, Nanomaterials 7, 305 (2017).CrossRefGoogle Scholar
  19. 19.
    Q.B. Zheng, Z.G. Li, J.H. Yang, and J.K. Kim, Prog. Mater. Sci. 64, 200 (2014).CrossRefGoogle Scholar
  20. 20.
    F. Lin, X. Tong, Y. Wang, J. Bao, and Z.M. Wang, Nanoscale Res. Lett. 10, 435 (2015).CrossRefGoogle Scholar
  21. 21.
    N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, E. Kesselman, Y. Cohen, Y. Talmon, J.M. Tour, and M. Pasquali, Nat. Nanotechnol. 5, 406 (2010).CrossRefGoogle Scholar
  22. 22.
    J.E. Kim, T.H. Han, S.H. Lee, J.Y. Kim, C.W. Ahn, J.M. Yun, and S.O. Kim, Angew. Chem. Int. Ed. Engl. 50, 3043 (2011).CrossRefGoogle Scholar
  23. 23.
    Z. Xu and C. Gao, ACS Nano 5, 2908 (2011).CrossRefGoogle Scholar
  24. 24.
    L. He, J. Ye, M. Shuai, Z. Zhu, X. Zhou, Y. Wang, Y. Li, Z. Su, H. Zhang, Y. Chen, Z. Liu, Z. Cheng, and J. Bao, Nanoscale 7, 1616 (2015).CrossRefGoogle Scholar
  25. 25.
    R.T.M. Ahmad, S.-H. Hong, T.-Z. Shen, Y.-S. Kim, and J.-K. Song, J. Nanosci. Nanotechnol. 16, 11364 (2016).CrossRefGoogle Scholar
  26. 26.
    J. Wang, Y. Hernandez, M. Lotya, J.N. Coleman, and W.J. Blau, Adv. Mater. 21, 2430 (2009).CrossRefGoogle Scholar
  27. 27.
    M.B.M. Krishna, N. Venkatramaiah, R. Venkatesan, and D.N. Rao, J. Mater. Chem. 22, 3059 (2012).CrossRefGoogle Scholar
  28. 28.
    X.F. Jiang, L. Polavarapu, S.T. Neo, T. Venkatesan, and Q.H. Xu, J. Phys. Chem. Lett. 3, 785 (2012).CrossRefGoogle Scholar
  29. 29.
    N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, J. Phys. Chem. C 117, 6842 (2013).CrossRefGoogle Scholar
  30. 30.
    N. Liaros, J. Tucek, K. Dimos, A. Bakandritsos, K.S. Andrikopoulos, D. Gournis, R. Zboril, and S. Couris, Nanoscale 8, 2908 (2016).CrossRefGoogle Scholar
  31. 31.
    H. Zhang, S. Virally, Q. Bao, L.K. Ping, S. Massar, N. Godbout, and P. Kockaert, Opt. Lett. 37, 1856 (2012).CrossRefGoogle Scholar
  32. 32.
    A.B. Bourlinos, A. Bakandritsos, N. Liaros, S. Couris, K. Safarova, M. Otyepka, and R. Zboril, Chem. Phys. Lett. 543, 101 (2012).CrossRefGoogle Scholar
  33. 33.
    X.L. Zhang, Z.B. Liu, X. Li, Q. Ma, X. Chen, J. Tian, Y. Xu, and Y. Chen, Opt. Express 21, 7511 (2013).CrossRefGoogle Scholar
  34. 34.
    J.I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J.M.D. Tascon, Langmuir 24, 10560 (2008).CrossRefGoogle Scholar
  35. 35.
    R. Karimzadeh and A. Arandian, Laser Phys. Lett. 12, 025401 (2015).CrossRefGoogle Scholar
  36. 36.
    M. Jahanbakhshian, M. Yadi, S. Adami, and R. Karimzadeh, J. Mater. Sci. Mater. Electron. 28, 13888 (2017).CrossRefGoogle Scholar
  37. 37.
    M. Yadi, R. Karimzadeh, and A. Abbasi, J. Mater. Sci. 52, 4532 (2017).CrossRefGoogle Scholar
  38. 38.
    G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).CrossRefGoogle Scholar
  39. 39.
    S. Sahoo, G. Khurana, S.K. Barik, S. Dussan, D. Barrionuevo, and R.S. Katiyar, J. Phys. Chem. C 117, 5485 (2013).CrossRefGoogle Scholar
  40. 40.
    K. Krishnamoorthy, M. Veerapandian, R. Mohan, and S.-J. Kim, Appl. Phys. A 106, 501 (2012).CrossRefGoogle Scholar
  41. 41.
    L.M. Malarda, M.A. Pimentaa, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rep. 473, 51 (2009).CrossRefGoogle Scholar
  42. 42.
    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 1 (2009).CrossRefGoogle Scholar
  43. 43.
    M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, and E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).CrossRefGoogle Scholar
  44. 44.
    P.B. Capple, J. Staromlynska, J.A. Hermann, and T.J. Mckay, J. Nonlinear Opt. Phys. Mater. 6, 251 (1997).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Shirin Changaei
    • 1
  • Javid Zamir-Anvari
    • 1
  • Najme-Sadat Heydari
    • 2
  • Sara Ghayeb Zamharir
    • 3
  • Maghsood Arshadi
    • 3
  • Bahram Bahrami
    • 2
  • Jalal Rouhi
    • 4
  • Rouhollah Karimzadeh
    • 3
    Email author
  1. 1.Department of PhysicsShahid Rajaee Teacher Training UniversityTehran, LavizanIran
  2. 2.Department of PhysicsTafresh UniversityTafreshIran
  3. 3.Department of PhysicsShahid Beheshti University, G.C.TehranIran
  4. 4.Centre of Nanoscience and Nanotechnology (NANO-SciTech Centre), Institute of ScienceUniversiti Teknologi MARAShah AlamMalaysia

Personalised recommendations